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Abstract 

The National Water Center (NWC) started using the National Water Model 

(NWM) in 2016. The NWM delivers state-of-the-science hydrologic forecasts in the 

nation. The NWM aims at operationally forecasting streamflow in more than 2,000,000 

river reaches while currently river forecasts are issued for 4,000. The NWM is a specific 

configuration of the community WRF-Hydro Land Surface Model (LSM) which has 

recently been introduced to the hydrologic community. The WRF-Hydro model, itself, 

uses another newly-developed LSM called Noah-MP as the core hydrologic model. In 

WRF-Hydro, Noah-MP results (such as soil moisture and runoff) are passed to routing 

modules. Riverine water level and discharge, among other variables, are outputted by 

WRF-Hydro. The NWM, WRF-Hydro, and Noah-MP have recently been developed and 

more research for operational accuracy is required on these models. The overarching goal 

in this dissertation is improving the ability of these three models in simulating and 

forecasting hydrological variables such as streamflow and soil moisture. Therefore, data 

assimilation (DA) is implemented on these models throughout this dissertation. State-of-

the art DA is a procedure to integrate observations obtained from in situ gages or 

remotely sensed products with model output in order to improve the model forecast. In 

the first chapter, remotely sensed satellite soil moisture data are assimilated into the 

Noah-MP model in order to improve the model simulations. The performances of two 

DA techniques are evaluated and compared in this chapter. To tackle the computational 

burden of DA, Massage Passing Interface protocols are used to augment the 
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computational power. Successful implementation of this algorithm is demonstrated to 

simulate soil moisture during the Colorado flood of 2013.  In the second chapter, the 

focus is on the WRF-Hydro model. Similarly, the ability of DA techniques in improving 

the performance of WRF-Hydro in simulating soil moisture and streamflow is 

investigated. The results of chapter 2 show that the assimilation of soil moisture can 

significantly improve the performance of WRF-Hydro. The improvement can reach 58% 

depending on the study location. Also, assimilation of USGS streamflow observations 

can improve the performance up to 25%. It was also observed that soil moisture 

assimilation does not affect streamflow. Similarly, streamflow assimilation does not 

improve soil moisture. Therefore, joint assimilation of soil moisture and streamflow 

using multivariate DA is suggested. Finally, in chapter 3, the uncertainties associated 

with flood forecasting are studied. Currently, the only uncertainty source that is taken 

into account is the meteorological forcings uncertainty. However, the results of the third 

chapter show that the initial condition uncertainty associated with the land state at the 

time of forecast is an important factor that has been overlooked in practice. The initial 

condition uncertainty is quantified using the DA. USGS streamflow observations are 

assimilated into the WRF-Hydro model for the past ten days before the forecasting date. 

The results show that short-range forecasts are significantly sensitive to the initial 

condition and its associated uncertainty. It is shown that quantification of this uncertainty 

can improve the forecasts by approximately 80%. The findings of this dissertation 

highlight the importance of DA to extract the information content from the observations 
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and then incorporate this information into the land surface models. The findings could be 

beneficial for flood forecasting in research and operation.    
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1 Motivation 

As the costliest natural hazard, floods have affected 2,490 million people between 

1980 and 2004 over the globe (Strömberg, 2007). From 1900 to 2015, the U.S. has had 

35,000 disasters out of which 40 percent are floods (Cigler, 2017). Two most recent 

examples of disasters that led to widespread flood are hurricane Harvey (Omranian et al., 

2018) in September 2017 and Hurricane Florence in September 2018. Another example is 

the 2013 flood in Colorado Front Range that affected 18,000 people with a cost of around 

$2 billion. This highlights the need for an efficient and effective operational flood 

forecasting system. Currently, River Forecast Centers (RFCs) are in charge of flood 

monitoring and forecasting up to a week in advance. There are 13 RFCs in the U.S. 

including Missouri, North Central, Northeast, Northwest, Ohio, Southeast, West Gulf, 

Arkansas-Red, Alaska River, Colorado, California-Nevada, Lower Mississippi, and Mid-

Atlantic. RFCs are in charge of approximately 4,000 river locations over the U.S. The 

need for a more comprehensive and process-based forecasting system with a longer lead-

time and a better spatial coverage over the U.S., brought the National Water Center 

(NWC) into operation. The NWC has taken the lead for operational flood forecasting 

over the U.S. since 2015. The primary model in the NWC is the National Water Model 

(NWM). With the goal of improving water prediction services in National Oceanic and 

Atmospheric Administration (NOAA), the NWM started operating in August 2016. The 

distinct feature of the NWM is that it increases the 4,000 prediction locations to 

2,700,000 locations over the Continental United States for streamflow prediction. In 
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addition to streamflow prediction, it simulates hydrological variables such as soil 

moisture and runoff. These variables are delivered at two spatial resolutions of 1 (km) 

and 250 (m). Another mission of the NWM is providing hyper-resolution (street-level) 

water predictions (Deo et al., 2018) for the National Weather Service (NWS) in order to 

improve decision making (http://water.noaa.gov/about/nwm; accessed on 9/18/2018). 

This feature is valuable in cases of hurricane-related flooding such as Harvey and 

Florence. The NWM is run operationally in four configurations including “Analysis and 

Assimilation”, “Short-Range”, “Medium-Range”, and “Long-Range”. The first run 

operates every hour and runs the NWM for the past 3 hours for a better estimation of the 

current land surface states and initializing the next three runs. The second run operates 

every hour and predicts streamflow and other hydrologic variables for the next 0-18 

hours, the third run operates four times a day and issues forecasts up to the next ten days, 

and the last run, operates daily and issues forecasts for up to 30 days. The NWC has been 

successful in operationally running the model with high resolution over a large scale, and 

the quality of forecasts is constantly increasing through research. The NWC encourages 

research on the NWM by holding summer schools that gather graduate students from all 

over the nation to develop and work on research projects that directly help improve the 

model (Afshari et al., 2016; Brazil, 2018; Deo et al., 2018).  

The NWM is a specific configuration of the community WRF-Hydro Land 

Surface Model (LSM) which has recently been introduced to the hydrologic community 

(Gochis et al., 2015, 2018). The WRF-Hydro model, itself, uses another newly-developed 
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column LSM called Noah-MP (Niu et al., 2011; Yang et al., 2011) as the core hydrologic 

model. In WRF-Hydro, Noah-MP results (such as soil moisture and runoff) are passed to 

surface and subsurface routing modules. The results are then passed to a channel routing 

model. Riverine water level and discharge, among other variables, are outputted by 

WRF-Hydro.  

The Noah-MP and WRF-Hydro models are of particular interest in this 

dissertation. Previous studies (Lin et al., 2018; Yang et al., 2011; Zhang et al., 2016) had 

shown the effectiveness of these models in simulating hydrological variables (i.e., soil 

moisture, runoff, and river discharge); however, they (similar to other LSMs) are subject 

to uncertainties. These uncertainties are associated with climate change (Ahmadalipour et 

al., 2017a, 2017c; Barlage et al., 2015; Rana and Moradkhani, 2016), urbanization 

(Pathiraja et al., 2018a), climate variability (Loikith et al., 2017; Zarekarizi et al., 2017), 

and model structure and parameterization (Moradkhani et al., 2018; Pathiraja et al., 

2016a).  

To quantify and reduce uncertainty, Data Assimilation (DA) can be used (Liu and 

Gupta, 2007; Moradkhani et al., 2005a). Hydrologic DA is a mathematical discipline to 

integrate land surface model simulations with observations to improve the forecast skills 

(Chen et al., 2013; Moradkhani et al., 2012, 2005b;  Pathiraja et al., 2018a, 2018b; 

Pathiraja et al., 2016a; Piazzi et al., 2018; Zaitchik et al., 2008). Commonly used DA 

methods in the hydrologic community are the Ensemble Kalman Filter (EnKF) (Clark et 

al., 2008), Particle Filter (PF) (Moradkhani et al., 2005; 2012; 2018), and Variational DA 
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(Daescu and Langland, 2017; Hamill and Snyder, 2000; Shaw and Daescu, 2016). EnKF 

was introduced by Evensen (1994) to build upon the well-known Kalman Filter (Kalman, 

1960) and has been used to improve hydrologic modeling and prediction (Clark et al., 

2008; Komma et al., 2008; Moradkhani et al., 2005b; Pathiraja et al., 2016a). Even 

though the EnKF is a statistically optimal estimation of a linear, Gaussian system, its 

widespread application in non-Gaussian and linear problems, has made this method a 

popular tool in hydrologic modeling (Maneta and Howitt, 2014; Moradkhani et al., 

2005b; Pathiraja et al., 2016a). On the other hand, PF-based methods are not subject to 

the limitation of the EnKF such as (1) Gaussian assumption of errors in model states and 

observations, (2) linear updating of model states, and (3) violation of the water balance 

due to linearly adjusting (updating) the states. In the PF, the water balance is not violated 

since ensemble members are resampled instead of being adjusted (Moradkhani, 2008). 

The PF has been used for a variety of purposes from streamflow modeling and prediction 

(Dechant and Moradkhani, 2011) to extreme drought and flood forecasting 

(Ahmadalipour et al., 2017b; Yan et al., 2018, 2017). The PF has evolved over time and 

one of the recent advancements resulted in the Particle Filter Markov Chain Monte Carlo 

(PF-MCMC) (Andrieu et al., 2010; Moradkhani et al., 2012) and recently to Evolutionary 

Particle Filter which combines the strengths of PF-MCMC and an Evolutionary 

optimization, i.e., Genetic algorithm (Abbaszadeh et al., 2018).  Yan et al. (2018) 

employed a parallel PF-MCMC to assimilate remotely sensed soil moisture observations 

into the Variable Infiltration Capacity (VIC) model. They demonstrated a better drought 

monitoring skill than currently implemented drought monitoring products. Yan et al. 
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(2017 and 2018) used the PF-MCMC and assimilated satellite soil moisture into the VIC 

model and combined the results with a multivariate statistical drought forecasting 

approach showed that initializing the drought forecasting model with updated soil 

moisture states from DA results in more accurate drought forecasts. They tested their 

methodology to hindcast the widespread drought of 2012 in the U.S. and showed that 

with DA, the drought could have been predicted weeks in advance.  

Similarly, the goal of this dissertation is to answer this question in the context of 

flood forecasting. Therefore, the overarching goal of this dissertation is to improve the 

performance of Noah-MP, WRF-Hydro, and the NWM in simulating and forecasting 

flood. Specifically, answering the following questions is targeted: 

(1) What are the main sources of uncertainty in flood forecasting? How could 

these sources be quantified? How sensitive are the forecasts to the uncertainties? Is initial 

condition uncertainty an important source? How long does it take for the system to forget 

about the initial conditions? 

(2) Are DA techniques able to improve the performance of Noah-MP in 

simulating soil moisture? How well are they able to improve the model? Which DA 

technique has better performance? How efficient are these methods? 

(3) How well are DA techniques able to improve the performance of the WRF-

Hydro model? Does assimilation of satellite soil moisture into WRF-Hydro affect the 

streamflow simulations? Does assimilation of USGS streamflow observations lead to 

improved soil moisture simulations? 
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Research and operation could benefit from the outcomes of this dissertation 

toward improving the skill of current flood forecasting systems while reducing the 

uncertainties. The outcomes help identify potential additions for future improvements in 

flood forecasting, especially in the NWM. The assessments provided in this dissertation 

are important preliminary steps toward a better land surface modeling practice for a better 

weather prediction skill and more accurate large-scale flood forecasts.  

The dissertation is organized as follows: In the second chapter, a literature review 

on Noah-MP and DA techniques are first provided and then, two experiments are 

designed and illustrated. The results and implications of these experiments are discussed 

in the end. In the third chapter, the WRF-Hydro model is targeted. Again, the relevant 

experiments are designed and the analyses and results are discussed. In the third chapter, 

initial condition uncertainty in flood forecasting is quantified. Synthetic and real data 

experiments are elaborated in that chapter and their findings and significance are 

discussed. The dissertation concludes with an overall summary of the main findings, 

discussion, and future work.   
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2 Data Assimilation to enhance Noah-MP soil moisture predictions 

 

2.1 Abstract 

Noah-MP is a land surface model that has recently attracted attention from the 

meteorological community because it can be coupled with weather forecasting models 

such as Weather Research and Forecast (WRF). The ability of the model to accurately 

simulate soil moisture is of particular interest because soil moisture plays an important 

role in agriculture productivity and flood/drought prediction. This chapter investigates the 

possibility to further improve the model’s skill in simulating soil moisture. Besides using 

a land surface model, soil moisture can be obtained from satellite measurements, and it 

has been shown that combining remotely-sensed and model-simulated soil moisture 

through data assimilation (DA) techniques can result in more accurate hydrologic 

forecasts. In this study, data assimilation methods are evaluated on the Noah-MP model. 

Particularly, two commonly used techniques, the Ensemble Kalman Filter (EnKF) and 

Particle Filter Markov Chain Monte Carlo (PF-MCMC) are assessed and compared. 

Additionally, an algorithm is proposed to handle the computational demand of such a 

large-scale DA implementation. The algorithm is designed for high-performance 

computing infrastructure and clusters of computational nodes. The results indicate that 

the DA successfully improves Noah-MP’s ability in simulating soil moisture. Results of 

comparing EnKF and PF-MCMC indicate that the PF-MCMC has a higher skill in 
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improving soil moisture. Finally, the proposed parallel algorithm is implemented for 

simulating soil moisture during the Colorado Front Range flood in 2013.    

2.2 Highlights 

(1) Two commonly used data assimilation methods, the Ensemble Kalman Filter 

and Particle Filter Markov Chain Monte Carlo, are successfully implemented on Noah-

MP. 

(2) Particle Filter DA shows a higher skill in improving Noah-MP’s soil moisture 

simulations. 

(3) A high-performance-computing method is implemented to meet the 

computational demand.  

2.3 Introduction 

Noah-MP (Yang et al., 2011) is a Land Surface Model (LSM) that plays an 

important role in earth system modeling. The water stored in the land during a wet season 

will eventually return to the atmosphere in the dry season through evapotranspiration 

(Niu et al., 2011). Noah-MP is capable of modeling this feedback. Soil moisture (the 

water stored in the land) plays a key role in this feedback because it has a persistence 

characteristic. This means that the water stored in soil needs weeks or even seasons to 

evaporate. Therefore, soil moisture can provide information about the future of the 

atmosphere and is known to affect weather predictability (Niu et al., 2011). On the other 

hand, it determines onset, duration, and termination of agricultural droughts 
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(Ahmadalipour et al., 2017b; Madadgar and Moradkhani, 2013; Yan et al., 2017; Yan et 

al., 2018) and it also is one of the important predictands of (flash) floods (Cenci et al., 

2017). Previous research (Gao et al., 2015; Martinez et al., 2016; Xia et al., 2017; Zhang 

et al., 2016) has shown that Noah-MP is significant in simulating soil moisture. For 

example, Cai et al. (2014a) concluded that Noah-MP has a significant capability in 

modeling the soil moisture. Also, Yang et al. (2011) studied the performance of soil 

moisture modeling in Noah-MP as compared with the Noah LSM (the previous version 

on Noah-MP) and found that Noah-MP improves the simulations.  

In addition to land surface modeling of soil moisture, this land surface variable 

can be measured from a variety of in-situ and remote sensors. Two types of soil moisture 

measurements include observed gauge measurements and satellite measurements. In-situ 

or gauge soil moisture networks are available for a limited number of points across the 

U.S., while satellite soil moisture observations are available over a grid.  

Both sources of obtaining soil moisture (LSMs and observations) are subject to a 

great deal of uncertainty. To reduce and quantify uncertainty, Data Assimilation (DA) is 

used (Liu and Gupta, 2007; Moradkhani et al., 2018, 2005a). In DA, observations are 

integrated with a dynamic land surface model
1
. 

                                                 

1
  In simple words, suppose a land surface model is running. This model has numerous variables. 

One variable of interest, x, is also observable by a satellite. When the satellite passes the area of interest, 

the value x is recorded. To make the model-generated values closer to observed satellite data, DA is used. 

The DA updates the model to reflect the values recorded by the satellite. 
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DA methods have been frequently discussed in the literature of hydrologic 

modeling (Chen et al., 2013; Moradkhani et al., 2012, 2005b; Pathiraja et al., 2016a; 

Pathiraja et al., 2018c; Piazzi et al., 2018; Zaitchik et al., 2008). In DA, one or multiple 

variables are updated every time an observation becomes available. Common variables 

that have been assimilated into land surface models include snowpack (Kumar et al., 

2016, 2014; Piazzi et al., 2018), streamflow (Aubert et al., 2003; DeChant and 

Moradkhani, 2014a, 2012), and soil moisture (Chen et al., 2011; Hain et al., 2012; 

Reichle et al., 2007; Marc Etienne Ridler et al., 2014).  Soil moisture, in particular, has 

been assimilated into land surface models with objectives such as drought 

monitoring/prediction (Ahmadalipour et al., 2017b; Yan et al., 2018, 2017), flood 

prediction (DeChant and Moradkhani, 2014b; Moradkhani et al., 2012) , or obtaining a 

better estimation of soil moisture (Hain et al., 2012; Yan et al., 2015).  

Successful assimilations of soil moisture observations on LSMs such as VIC (Yan 

et al., 2018), PRMS (Yan et al., 2017), and NASA LIS (Hain et al., 2012) have been 

reported in the literature. However, limited research has been done on Noah-MP soil 

moisture DA. The limited number of research on the assimilation of observed soil 

moisture into the Noah-MP model may be attributed to the computational burden and the 

complexity of this model.  

Consequently, improving Noah-MP and its representation of soil moisture is the 

main goal of this chapter. Specifically, this chapter aims as the following: 
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(1) Assessing the performance of data assimilation techniques on the Noah-MP 

simulations.  

(2) Comparing the skill of commonly used DA techniques.   

(3) Introducing a high-performance-computing process to tackle the high 

computation demand of such DA techniques.  

The value of this research lies in weather predictability and flood forecasting. 

Further improving the current ability in simulating soil moisture is intended in this study 

which can improve the current skills in weather and flood prediction. The results of this 

study could help the operational agencies such as the National Water Center in improving 

flood forecasts and the NCEP for further improving climate forecasts.  

The rest of the chapter is structured as follows: more information about the study 

area, data, and the event of interest are provided in the next section. The data assimilation 

and parallel computing methodologies are explained in the methodology section, 

followed by a section illustrating the pre-processing of the Noah-MP model. The results 

of a simple model run are provided in the first part of the results section. The results 

section is followed by the DA results and the designed experiments. Finally, the chapter 

is concluded with a short summary and discussions/conclusions.  
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2.4 Study area and data  

2.4.1 Colorado Front Range and the 2013 flood 

Since one of the goals of this study is to investigate the role of soil moisture 

assimilation targeting operational flood forecasting systems, modeling floods is of 

interest. In particular, The great Colorado flood of September 2013 is studied. This flood 

happened during the period of 9-16 September 2013 due to heavy rainfall (>450 mm) in 

the Colorado Front Range foothills. The flood caused $2 billion in damage, 8 flood-

related fatalities and forced 18,000 people to evacuate their houses (Gochis et al., 2015). 

Record atmospheric moisture was brought to the region by large-scale moisture advection 

features and led to heavy rainfall. While numerical weather predictions were able to 

identify this rainfall, they had significant errors in its magnitude and spatial pattern 

(Gochis et al., 2015). For a detailed assessment of the causes and impacts of this flood, 

interested readers are referred to Uccellini (2014). Figure 2-1 shows the location and 

imagery of this area.  
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Figure 2-1: Imagery and location of the studied area, Colorado Front Range  

 

2.4.2 Satellite soil moisture observations  

Frequently used satellite soil moisture products are the Climate Change Initiative 

(CCI), Soil Moisture and Ocean Salinity (SMOS), Advanced Scatterometer (ASCAT) by 

European Space Agency (ESA), and Soil Moisture Active Passive (SMAP) by National 

Aeronautics and Space Administration (NASA). 

Available from March 31, 2015, SMAP (Entekhabi et al., 2010) monitors the 

Earth’s land surface for soil moisture. A unique feature of this mission is its ability to 

distinguish frozen and thawed land surfaces. SMAP provides more than 20 data products 
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with different spatiotemporal resolutions under four levels of L1, L2, L3, and L4, 

representing the processing levels. The L1 and L2 products contain instrument-related 

data based on half orbits of the SMAP satellite. The L3 products are a daily composite of 

L2. The L4 data are the output from NASA’s land surface model estimated by 

assimilation of L-band brightness temperature observations. While SMAP measurements 

provide soil moisture in the upper 5 cm of the soil column, L4 products are designed to 

provide root zone soil moisture by informing model simulations of surface soil moisture 

within data assimilation processes. One application that can directly benefit from 

remotely sensed soil moisture measurements is flood forecasting (Entekhabi et al., 2010) 

since soil moisture plays an essential role in partitioning rainfall into infiltration and 

runoff. Accurate observations of current soil moisture status lead to improved flood 

forecasts. This study investigates the advantages of updated soil moisture states.  

Since SMAP data were not available for the 2013 flood, the Climate Change 

Initiative (CCI) v02.2 (Dorigo et al., 2017; Liu et al., 2011) is used for this case study. 

Four passive and two active microwaves are blended to form the CCI products including 

the Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave 

Imager (SSM/I), Tropical Rainfall Measure Mission (TRMM) Microwave Imager (TMI), 

Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), 

Advanced Microwave Instrument (AMI), and ASCAT. The temporal resolution of CCI 

data is daily and the spatial resolution is 0.25˚.   
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2.4.3 Meteorological forcing 

Two datasets that could potentially be used for Noah-MP are GLDAS (Global 

Land Data Assimilation System) and NLDAS (North American Land Data Assimilation 

System).  The Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004), 

built upon the North American Land Data Assimilation System (NLDAS), provides 

support for improved forecast initial conditions by integrating data from advanced 

observing systems. GLDAS is a multi-institutional product developed jointly by National 

Aeronautics and Space Administration (NASA), Goddard Space Flight Center (GSFC), 

and the National Oceanic and Atmospheric Administration National Centers for 

Environmental Prediction (NOAA NCEP) and is run at NCEP, NASA GSFC, Princeton 

University, the University of Washington, and NOAA’s Office of Hydrologic 

Development. GLDAS drives Mosaic, Noah, CLM, and VIC land surface models with 

the goal of simulating the transfer of mass, energy, and momentum. Then, it updates the 

simulations by merging them with satellite- and ground-based observations through data 

assimilation techniques such as the Ensemble Kalman Filter and the Extended Kalman 

Filter. GLDAS runs are performed on 0.25˚ × 0.25˚ (standard operational run), 0.5˚×0.5˚, 

1.0˚×1.0˚, and 2.0˚×2.5˚ grids and the results are publicly available in near-real time. 

Multiple versions of GLDAS are available including GLDAS-2, which refers to 

simulations forced entirely with Princeton meteorological forcing data, GLDAS-2.1 

referring to simulations forced with a combination of model- and observation-based data, 

and GLDAS-1 which includes simulations forced by combination of NOAA/GLDAS 
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atmospheric analysis fields, spatially and temporally disaggregated NOAA Climate 

Prediction Center Merged Analysis of Precipitation (CMAP) fields
2
.  

Land surface models, in particular, Noah-MP (Niu et al., 2011; Yang et al., 2011), 

can be forced with the GLDAS meteorological data such as precipitation, short- (and 

long-) wave radiation, air temperature, air pressure, specific humidity, and wind speed. 

For example, Yang et al. (2011) run Noah-MP at a global scale with meteorological 

forcing data from GLDAS for the period of 1980-2006 in order to assess the performance 

of Noah-MP.  

In this study, the Noah-MP model is forced with surface meteorological data 

including daily or sub-daily precipitation, wind speed, air temperature, specific humidity, 

air pressure, and incoming longwave and shortwave radiation. Meteorological forcings 

were obtained from the Phase II North American Land Data Assimilation System 

(NLDAS-2) (Xia et al., 2012b), gridded to the 1/8˚ resolution. NLDAS is a multi-

institution project aiming at providing reliable initial land states to improve weather 

predictions. NLDAS runs Noah, Mosaic, Sacramento Soil Moisture Accounting (SAC-

SMA), and VIC to generate land states over 1/8˚ CONUS domain (Xia et al., 2012a). 

NLDAS-1 was first introduced by Mitchell et al. (2004) and later in 2012 NLDAS-2 

which builds on NLDAS-1 was published. The second phase increased the accuracy and 

consistency of the data and upgraded the model codes and parameters. 

                                                 

2
 For more information, visit 

https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_V2.1/summary?keywords=GLDAS  
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2.5 Noah-MP Land Surface Model 

A Land Surface Model (LSM) is a mathematical representation of a hydrologic 

system that simulates energy and water fluxes. LSMs are categorized into two categories 

of lumped and distributed. While lumped models simulate the entire basin as one entity 

with forcing data (input) uniformly distributed across the basin, distributed models divide 

the watershed into smaller units (e.g., grid cells) and solve the energy and water balance 

for each unit. Some well-known distributed models include (but are not limited to) 

Variable Infiltration Capacity (VIC) (Liang et al., 1994; Nijssen et al., 2001), Community 

Land Model (CLM) (Oleson  Lawrence, D. M., Bonan, G. B., Flanner, M. G., et al., 

2010), Noah (Ek, 2003), and Noah-MP (Yang et al., 2011).  

Noah LSM is a result of multi-institutional cooperation including the Air Force 

Weather Agency, Weather Research and Forecast (WRF), and the National Center for 

Environmental Prediction (NCEP). The model is reported to have shortcomings on the 

following processes: 

1) Runoff and snowmelt simulations (Bowling et al., 2003; Slater et al., 2007). 

2) Snow skin temperature prediction as a result of combining vegetation and snow 

layers in snowy days (Niu et al., 2011). 

3) Capturing the Earth’s critical zone because the model considers just a shallow 

soil column (only two meters) which then results in a relatively short soil memory (Niu et 

al., 2011). 
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4) Representing infiltration in the presence of frozen soil (Shanley and Chalmers, 

1999).  

However, Noah-MP (Yang et al., 2011) attempts to resolve the above weaknesses 

by adding a vegetation canopy layer, modifying the radiation transfer system, and relating 

stomatal resilience to photosynthesis. In addition to solving the aforementioned problems 

(Barlage et al., 2015), Noah-MP offers alternatives for various physical processes. For 

instance, multiple options are provided for dynamic vegetation, frozen soil permeability, 

conversion of precipitation into rainfall/snowfall, generation of runoff/groundwater, and 

more processes as discussed in Niu et al. (2011). A performance assessment of Noah-MP 

(Yang et al., 2011) concluded that despite the amplified computational time, the model 

demonstrates improvements in skin temperature, runoff, snow, and soil moisture 

simulations as compared to the original Noah LSM. Furthermore, the optional 

parameterization schemas of the Noah-MP model was proven beneficial after conducting 

36 experiments with 36 different combinations of parameter schemas concluding that the 

ensemble mean performs better than any individual ensemble member (Yang et al., 

2011). 

Noah-MP has attracted attention from the meteorological and hydrological 

communities. The meteorological community is interested in this model mainly because 

it has been coupled with the Weather Research and Forecast (WRF) model. Such 

coupling enables the modeling of the land-atmosphere feedbacks. Coupled Noah LSM 

has been used in operational agencies such as the National Center for Environmental 
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Prediction (NCEP) for weather prediction and downscaling of the climate models (Yang 

et al., 2011); Noah-MP is a possible replacement. Additionally, Noah-MP was tested for 

inclusion in the next phase of the North American Land Data Assimilation System 

(NLDAS) (Cai et al., 2014b). On the other hand, the hydrologic community has become 

interested in this model because it is the main LSM in the National Water Model (NWM) 

operated by the National Weather Service (NWS) for flood forecasting in more than 2 

million river reaches over the Continental United States. 

A brief literature review on the Noah-MP model is presented in the following. 

More specific information such as setting up the model is discussed in the “results” 

section. 

Model background: Noah-MP is developed in FORTRAN and is forced with the 

air temperature at height z above ground, snowfall, rainfall, surface downward solar 

radiation, surface downward longwave radiation, specific humidity at height z above 

ground, and surface pressure at height z above ground. It is noteworthy that the entire 

forcing variables are available through the Global Land Data Assimilation System 

(GLDAS) (Rodell et al., 2004).  

Xia et al. (2017) discussed the next generation of NLDAS using three LSMs 

including Noah-MP, Community Land Model version 4.0 (CLM4.0), and Catchment 

LSM-Fortuna 2.5 (CLSM-F2.5). They concluded that all three models were able to 

capture monthly to inter-annual variability. They also discussed that current LSMs in 
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NLDAS have a simple snow model, which causes an unrealistic runoff simulation and 

thus, Noah-MP can be of interest.  

Model sensitivity: Cuntz et al. (2016) performed a global sensitivity analysis of 

Noah-MP parameters. In addition to 71 model parameters, they found 139 hard-coded 

parameters and included them in their analysis and found that the most sensitive 

parameter is a hard-coded one that controls soil surface against direct evaporation. They 

find that latent heat
3
 and runoff have similar sensitivities and that surface runoff is 

sensitive to almost all of the hard-coded parameters. They also argue that the model is 

sensitive to the quality of incoming radiation. They suggested that the user should take 

care of the amount of direct diffusive radiation and the amount of visible to near-infrared 

radiation in the input files.    

Arsenault et al. (2018) conducted a sensitivity analysis of Noah-MP. They used a 

variance decomposition method to assess model sensitivity to its parameters. Their target 

variables were soil moisture, sensible heat, latent heat, and net ecosystem exchange. They 

have done the analysis on 10 international Fluxnet stations over the globe. They 

considered four configurations and concluded that in dynamic vegetation configuration, 

all output variables were very sensitive to wilting point, unsaturated soil conductivity 

exponent, baseline light use efficiency, baseline carboxylation, leaf turnover, and single-

sided leaf area. Particularly for soil moisture, they considered porosity and saturated soil 

                                                 

3
 The hidden (latent=hidden) heat absorbed or released in processes that the temperature remains 

the same, such as evaporation, condensation, melting, freezing, or sublimation.   
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hydraulic conductivity. They also conclude that dynamic vegetation configuration makes 

soil moisture more sensitive to vegetation parameters. This highlights the potential of 

using a land surface model with dynamic vegetation option to improve soil moisture state 

estimates (Yang et al., 2011). 

Model performance: Model performance of Noah-MP was first evaluated by 

Yang et al. (2011) where global-scale tests were conducted on the model. By comparing 

model simulations against satellite and ground-based observations, they showed 

improvements in modeling runoff, soil moisture, snow, and skin temperature as compared 

to the Noah LSM. They design six experiments ranging from Noah LSM to fully 

augmented Noah-MP with dynamic vegetation. They also made an ensemble of different 

schemas and recommended that the model should be used in an ensemble format. An 

important note regarding the Noah-MP LSM is that the mean state and variability of the 

model are controlled by ET but modulated by the buffering effects due to groundwater 

(Yang et al., 2011). Yang et al. (2011)discuss that the runoff schema plays a vital role in 

soil moisture-ET relationship. Four options are provided for calculating runoff. These 

options include Simple Top Runoff and Groundwater Model (SIMGM), Simple Top 

Runoff Model (SIMTOP), and Schaake96. SIMGM refers to TOPMODEL-based runoff 

scheme with the simple groundwater (Niu et al., 2011), SIMTOP refers to a simple 

TOPMODEL‐based runoff scheme with an equilibrium water table (Niu et al., 2011), and 

Schaake96 refers to an infiltration‐excess‐based surface runoff scheme. This scheme uses 

a gravitational free‐drainage subsurface runoff process which was used in the original 



22 

 

Noah model as well (Schaake et al., 1996). The last runoff schema option is BATS. 

Surface runoff in BATS is parameterized as a 4th power function of the top 2 m soil 

wetness. The subsurface runoff is parameterized as gravitational free drainage (Niu et al., 

2011). Yang et al. (2011) discuss that some schemas such as SIMTOP result in the wetter 

soil as they impose a lower boundary condition (zero-flux). Runoff schemas with 

gravitational free drainage (such as BATS) tend to underestimate soil moisture, which in 

turn leads to underestimation of ET as compared to models with a groundwater 

component. While the runoff schema is a key schema for soil moisture modeling, as 

concluded by Yang et al. (2011), the β factor (a factor in Noah-MP that controls stomatal 

resistance), dynamic vegetation, and stomatal resistance are not as important.  

The 2m maximum temperature is very sensitive to the choice of the LSM as 

Burakowski et al. (2016) showed. Zhang et al., (2016) showed that these subprocess 

schemas have the highest uncertainty: canopy resistance, soil moisture threshold for 

evaporation, runoff and groundwater, and surface-layer parameterization. Ma et al. 

(2017) evaluate Noah-MP’s performance over 18 HUC2 regions across the CONUS. 

They observed that the model performs better in simulating evapotranspiration when the 

dynamic vegetation option is off and they conclude that the dynamic vegetation option 

needs to be improved. Ma et al. (2017),Niu et al. (2011), and Yang et al. (2011) 

confirmed that Noah-MP performs well in simulating snow depth and snow water 

equivalent (SWE).  
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Martinez et al. (2016) concluded that an increase in root-zone soil moisture (top 2 

meters) results in an increase of evapotranspiration, mostly in areas where ET is more 

water limited. They also found that the groundwater schemas induce an increase in the 

simulated moisture where the water table is close to the surface. They discussed that 

when the increase in ET takes place in areas that water table is in the root-zone, part of 

the extra ET comes from direct uptake of moisture from the saturated layers below the 

water table (i.e., direct groundwater uptake). 

Model spin-up: Cai et al. (2014a) analyzed the required spin-up duration for soil 

moisture and suggested that 8 years is enough for the analysis. Gao et al. (2015) 

discussed the spin-up period for the Noah-MP model and highlighted the importance of 

spin-up in Noah-MP. The required spin-up period may vary from a couple of years to 

more than 30 years, depending on the variable of interest and the physics of the model. 

For example, Gao et al., (2015) discussed that for a simple soil physics, 4 years of spin-

up would be enough, while in case of adding organic matter and spare to dense 

rhizosphere parameterization, 30 years of spin-up is needed.    

Coupling with climate models: Gao et al. (2015) discussed that the interactions 

between land and atmosphere are not well represented in the current LSMs. Therefore, 

they used Noah-MP to assess the parameterization role in Tibetan Plateau (TP). They 

concluded that uncertainty in soil initialization significantly affects deep-soil temperature 

and moisture. They discussed that the uncertainties in atmospheric forcings affects topsoil 

variables, and therefore the surface energy fluxes. They showed that the default Noah-MP 
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has large dry biases (about 50%) in topsoil moisture in the monsoon season. They 

reported successful results when the rhizosphere effect is taken into consideration. 

2.6 Methodology  

2.6.1 Data Assimilation 

 In this study, both EnKF and PF-MCMC are used and their performance in 

improving soil moisture simulations is assessed. In the following section, a brief literature 

review on both methods is presented.  

2.6.1.1 Particle Filter 

Particle Filter (PF) methods have been frequently demonstrated to be effective in 

hydrologic modeling (Dechant and Moradkhani, 2011; Moradkhani et al., 2018, 2012; 

Yan and Moradkhani, 2016). Similar to all PFs, PF-MCMC is also based on Sequential 

Importance Resampling (SIS) (Liu et al., 2001). Due to weight degeneracy as a 

shortcoming of SIS, a resampling step is introduced where particles with significant 

weights are replicated and particles with insignificant weights are neglected (Moradkhani 

et al., 2012). Markov Chain Monte Carlo (MCMC) methods are introduced as an 

alternative of PFs that are based on the Ergodic theory
4
 while PFs are based on the law of 

large numbers (Moradkhani et al., 2012). These techniques explore the posterior 

distribution using one or more chains and are more efficient than the PF methods 

(Moradkhani et al., 2012). MCMC methods are one of the ten most influential algorithms 

                                                 

4
 A branch of statistics where the main concern is the behavior of dynamic systems.  
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of the 20
th

 century (Dongarra and Sullivan, 2000). In simple words, the goal of MCMC is 

to sample from a complicated, high-dimensional function. However, the function is too 

complicated to sample from. One way to tackle this problem is importance sampling 

where there is a proposal distribution to sample from. This proposal distribution could 

successfully mimic the original posterior distribution in low dimensions; however, for 

higher dimensions, the proposal distribution can incorrectly assign higher probabilities. 

Therefore, the proposal distribution could fail in high dimensions. MCMC methods 

propose to tackle this problem by a random walk in the areas with high probabilities.  

The particle filter (PF) based ensemble DA algorithm is used in this study to 

update the model states and quantify the initial condition uncertainty. Compared with the 

popular ensemble Kalman filter (EnKF), the PF can relax the Gaussian error assumption, 

maintain water balance, and provide a more complete representation of state/parameter 

posterior distribution (Dechant and Moradkhani, 2014; Moradkhani et al., 2012; Yan and 

Moradkhani, 2016; Yan et al., 2015).  

As demonstrated by Moradkhani (2008), the state-space models that describe the 

generic earth system are as follows: 

       (         )     (1) 

     (  )     (2) 

where     
  is a vector of the uncertain state variables at a current time step, 

    
  is a vector of observation data,    is the uncertain forcing data,      is the 
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model parameters, h is a non-linear function that relates the states    to the observations 

  ,    represents the model error, and    indicates the observation error. The errors     

and    are assumed to be white noise with mean zero and covariance    and   , 

respectively. The posterior distribution of the state variables    given a realization of the 

observations      is written as follows: 

 
 (       )   (             )  

 (     ) (         )

 (         )

 
 (     ) (         )

∫  (     ) (         )   
 

(3) 

   

 (         )  

∫ (              )      ∫ (       ) (           )      

(4) 

where  (     ) is the likelihood,  (         ) is the prior distribution, and 

 (         ) is the normalization factor. In practice, Equation (3) does not have an 

analytic solution except for a few special cases. Instead, the posterior distribution 

 (       ) is usually approximated using a set of Monte Carlo (MC) random samples as: 

 

 (       )  ∑  
   (     

 )

 

   

 (5) 

where   
   is the posterior weight of the     particle,    is the Dirac delta function, 

and   is the ensemble size. The normalized weights are calculated as follows: 
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where   
   is the prior particle weights, and  (     

 ) can be computed from the 

likelihood  (     
 ). Generally, a Gaussian distribution is used to estimate  (     
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 ))] (7) 

To obtain approximate samples from  (       ), a resampling operation is 

necessary. Moradkhani et al. (2005a) suggest resampling the particles with a probability 

greater than the uniform probability. After resampling, all the particle weights are set 

equal to   ⁄ .  

To further reduce the weight degeneration problem (where all but one of the 

importance weights are close to zero), the particle filter with sampling importance 

resampling (PF-SIR) algorithm can be combined with Markov chain Monte Carlo 

(MCMC) (Andrieu et al., 2010; Moradkhani et al., 2012). The recently developed particle 

Markov chain Monte Carlo (PMCMC) (Andrieu et al., 2010) is used in this study for 

large-scale DA applications. The PMCMC is an extension of the PF-SIR and uses the PF-

SIR to design efficient high-dimensional proposal distributions for the MCMC algorithm.  

The PMCMC consists of the following three steps: (1) Initialization (   ): run 

PF-SIR targeting  (       ), sample   ( )  (       ) and let  (    )( ) denote the 

corresponding marginal likelihood estimate. (2) Iteration (   ): sample   
   (       ) 
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again and let  (    )
  denote the corresponding marginal likelihood estimate. (3) 

Calculate the acceptance ratio as: 

 
   {  

 (    )
 

 (    )(   )
} (8) 

and set   ( )    
  and  (    )( )   (    )

 ; otherwise set    ( )    (   ) 

and  (    )( )   (    )(   ). 

It is worth noting that the assimilation of soil moisture in Noah-MP is done 

separately for each grid cell. Therefore, each grid cell is updated separately without 

receiving any information from the adjacent cells. 

2.6.1.2 Ensemble Kalman Filter 

Unlike the Particle Filter methods that assign weights to ensemble members, the 

EnKF adjusts the value of the state variables according to the observations. EnKF 

(Evensen, 1994) is an extension of Kalman Filter (Kalman, 1960). If x is the state 

variable, at each time step that an observation becomes available, the state is updated 

through the following equation: 

    
     

    (      
     ) (9) 

where   
   is the posterior state vector for the     ensemble member,   

   is the 

priori state vector,   is the linearized observation operator (      ⁄ ) that translates 

model space to observation space, and   is the Kalman gain calculated as: 
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       (        )
      (      )

  
 (10) 

where    is the model state error covariance,          is the covariance of 

the state ensembles with the predicted observations, and           is the variance of 

the predicted observations.  

2.6.2 High-Performance Computing 

Large-scale, high-resolution ensemble DA with land surface modeling is 

computationally very expensive. One possible solution is parallel computing that uses 

multiple computational sources to augment the computational power. Parallel processing 

uses multiple processing nodes concurrently. Since in ensemble data assimilation, there 

are no dependencies between ensemble members, parallel computing is of interest. In 

ensemble data assimilation, and particularly PF-MCMC each ensemble member is an 

evolving Markov chain and different chains are independent of each other and can be run 

in parallel. The bottleneck of using parallel computing in data assimilation is the time 

dependence. Although ensemble members are independent of each other, they need 

information from the previous time step.  

Parallel computing is defined as the simultaneous use of multiple computing 

sources. Depending on the hardware, parallel computing is referred to as high-

performance computing. If the resources are as small as a desktop computer or a laptop, it 

is called parallel computing, but when the resources increase to cluster where hundreds of 

nodes are used or supercomputers, where thousands of nodes are used, it is referred to as 
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high-performance computing (HPC).  The most commonly used Application 

Programming Interface
5
 (API) for parallel processing is Massage Passing Interface or 

MPI. One can think of MPI as a set of subroutines and communication protocols with 

fixed functionality. However, MPI is available for many languages such as Python, C, 

C++, FORTRAN, etc. Multiple MPI APIs are available including OpenMPI, HP-MPI, 

MPICH. All of these APIs follow the same standard.  

Two commonly used ways of parallel programming are shared memory and 

distributed memory. In the shared memory system, multiple processes are created and 

each has access to the entire memory. For example, if the value of a matrix changes, 

every process uses the updated values. On the other side, in distributed memory systems, 

multiple copies of the main program are provided for each process. Processes are not 

aware of changes that other processes make. To pass the information along, processes 

need to use communication protocols such as send and receive, broadcast, etc. 

Communications in MPI programs are expensive; therefore, the number of 

communications should be optimized in an MPI-based program.  

 Conventionally for parallel data assimilation, two methods have been used: 

model decomposition and domain decomposition. Every data assimilation technique has 

these two steps: “simulation” and “update”. A parallel program could focus on one or 

both of them. As discussed in Yan et al. (2018) , model decomposition starts from grid 

                                                 

5
 A set of clearly defined subroutines 
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cell #1, completes the “simulation” and “update” and proceeds to grid cell #2. The update 

section of this schema is in parallel meaning that ensemble members are distributed 

between processors. Since the “update” step needs the ensemble members to 

communicate (for adding noise to the simulations, for example), this schema will be very 

expensive in modern supercomputers and clusters due to the frequent need to 

communicate. As discussed in Yan et al. (2018) , model decomposition is more suitable 

for small watersheds and shared memory programming (for example, using OpenMP).  

The domain decomposition schema completes the “simulation”, and then for 

updating, it distributes the cells between processors and completes the “update” step in 

parallel. While cells are updated in parallel, one processor handles all the ensemble 

members of one cell. In other words, different grid cell states can be updated concurrently 

where each processor only updates the grid cell states which belong to its own. This way, 

a significant amount of communications between different grid cells is saved (Marc E. 

Ridler et al., 2014; Yan et al., 2018). As a result, the domain decomposition 

implementation has attracted more attention in the community and in operation (Gochis 

et al., 2018).  

The overall parallel structure of this study is described in the following steps and 

a schematic of these steps is presented in Figure 2-2. It should be noted that the parallel 

algorithm used by Yan et al. (2018) was on the VIC model while in this chapter the focus 

is on Noah-MP. 
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(1) The program is initialized and n processes for Δt time steps are created. 

Numbers (ranks) are assigned to processors. The process with rank 0 is called the master 

process and the rest are called the worker processes; however, there is no difference 

between rank 0 and the rest. The DA ensemble size is s. The total number of cells is nc.  

(2) Perturbing
6
 forcings: Each processor takes responsibility of Δt(i)=Δt/n time 

steps. It goes over all the assigned time steps, reads the forcing file for this time step, 

perturbs rainfall and temperature and makes an ensemble with size n, and writes the 

ensemble.  

(3)  DA starts; t=0 

(4) Each worker takes responsibility of s(i)=s/n members of the DA ensemble. 

For the assigned ensemble portion, it runs the model for a time step. The simulations are 

automatically written by Noah-MP. Then the processes wait until all of them have 

completed the job. The forcings of the succeeding step are the results of the previous 

step.  

(5) The master processor reads soil moisture (or streamflow, depending on the 

purpose of DA) from all the simulations and aggregates them. It broadcasts the 

aggregated data to all the processors. 

                                                 

6
 Add noise 
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(6) The master processor assigns a block of domain grid cells to each worker. 

Roughly, each worker will have Δc=nc/n cells. It then broadcasts the assignments to 

every worker. 

(7) Each worker (but not the master) updates (based on PF-MCMC or EnKF) the 

simulations for every cell that it is in charge of (Δc) sequentially. For each grid cell, the 

“update” routine is initialized where s simulations are compared against the observation 

at that time and that cell. Then PF-MCMC or EnKF is run.  

Every time a worker finishes updating a cell, it will communicate the updated 

ensemble to the master process.  

(8) The master process that has collected all the updated ensemble members will 

gather all the information, re-order them and broadcast the results for the entire crew. 

(9)   Each worker becomes in charge of s(i)=s/n DA ensemble members and 

writes the DA updated states in the restart files so it could be used in the next time step.  

(10) The DA is completed for this time step. All the processors go to the next time 

step and start from step (1).  

In this study, Portland State University’s Coeus HPC cluster is used. This cluster 

is comprised of (1) 128 general computing nodes each with 20 cores and 128GB of RAM 

(medium partition), (2) 12 PHI processor nodes each with 96GB of RAM and 64 cores 

(3) 2 nodes with high memories each with 768 GB of RAM and 24 cores. All the 

programs in this study are written in Python3 and for parallel processing, MPI in Python 



34 

 

using package mpi4py (Dalcín et al., 2008, 2005, 2011) is used. A simplified flowchart of 

the algorithm, presented in Figure 2-2, shows the process of parallel computing in this 

study. 

 

Figure 2-2: Parallel ensemble data assimilation flowchart used in this dissertation 
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2.6.3 Performance assessment 

In this chapter, two commonly used performance measures including Normalized 

Information Criterion (NIC) and Bias are applied. NIC has been frequently used to 

measure the improvements by the DA and it is defined as below (Yan et al., 2018, 2017). 

     (             )          (11) 

Where RMSE is defined as  

 

     √∑(       )

 

   

 

   (12) 

To assess the performance temporally, Bias, as defined by the following equation, 

is used. 

 
     ∑         

 

   

 (13) 

In all the equations, y indicates the variable of interest (soil moisture or 

streamflow in this dissertation), o indicates “observed”, and p indicated “predicted”. N is 

the length of the dataset.  

2.6.4 Characterization of uncertainties  

Uncertainties in forcing data (precipitation and temperature) and soil moisture 

observations are quantified by building a parametric distribution around the expected 
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value. For precipitation, it is assumed that the data follow a lognormal distribution with 

mean zero and coefficient of variation of 35%. The added errors to precipitation are 

heteroscedastic which means that the error is proportional to the rain intensity. However, 

for temperature, the homoscedastic assumption is used which means the errors are not 

dependent on the value of temperature. Similarly, for soil moisture observations, a fixed 

standard deviation of 0.04 m
3
/m

3
 is considered. Model structure uncertainty is also 

represented through perturbing simulated soil moisture simulations, which assumes a 

coefficient of variation of 10%.  

2.7 Model setup and pre-processing 

In this section, the primary steps before running the Noah-MP model are 

explained. First, re-gridding the forcing files are explained and then selected variables in 

the domain files are shown and discussed.  

The model is run with a spatial resolution of 1 (km) and temporal resolution of 1 

hour for the period of 1 January 2013 to 1 October 2013 over the Colorado Front Range 

area.  

2.7.1 Re-gridding the forcing inputs 

For preprocessing and running the model, WRF-Hydro (Weather Research and 

Forecast-Hydrological Processing) (Gochis et al., 2018) is employed. WRF-Hydro V3 is 

a land surface model that uses Noah-MP as the core column land surface model 

combined with surface, sub-surface, and channel routing modules. In all model runs of 
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this chapter, the routing and groundwater modules were turned off. Forcing inputs are re-

gridded and prepared by WRF-Hydro’s available pre-processing scripts at 

(https://ral.ucar.edu/projects/wrf_hydro/regridding-scripts). These scripts are available for 

multiple datasets. Given that NLDAS data are utilized in this study, NLDAS re-gridding 

script that is written in NCAR Command Language (NCL) is downloaded and used. 

Forcing variables include incoming shortwave radiation (W/m
2
), incoming longwave 

radiation (W/m
2
), specific humidity (kg/kg), air temperature (K), surface pressure (Pa), 

the horizontal component of wind speed (m/s), the vertical component of wind speed 

(m/s), and liquid water precipitation rate (mm/s) are downloaded from NLDAS-2 

database. Two of these input variables, rainfall and temperature, are presented in 

Figure 2-3. In this figure, temperature and rainfall are mapped over the study area, the 

Colorado Front Range. As mentioned in 2.4.3, both variables are obtained from the North 

American Land Data Assimilation dataset.   

 

Figure 2-3: Temperature and rainfall inputs obtained from the NLDAS dataset and 

mapped over the study area. Both datasets are mapped for September 12, 2018 12:00 PM.  
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2.7.2 Domain files  

Domain input files were acquired from the example case study provided along 

with WRF-Hydro V3. These files include terrain (such as elevation) and vegetation (such 

as monthly green fraction) information. Two select variables including elevation and 

monthly green fraction are presented in the following. The elevation map of the study 

area is shown in Figure 2-4 and monthly green fraction is for January (top left panel) to 

December (bottom right panel) is mapped in Figure 2-5. It is worth noting that the 

monthly green fraction data are generated by the WRF preprocessing tool that is available 

through NCAR website (https://ral.ucar.edu/projects/wrf_hydro/overview) 

 

Figure 2-4: Height (m) as used in the domain file to run the Noah-MP model. 
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Figure 2-5: Monthly green fraction fields used as input in the Noah-MP domain file. Data 

are obtained from the WRF pre-processing tool. 
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As mentioned, Noah-MP introduced multi-parameterization to land surface 

modeling. Different options are provided for a single process. For example, four options 

are provided for calculating runoff. The options that were chosen in this study are listed 

in Table 2-1.  

Table 2-1: Noah-MP parameterization options and the selected schemes used in this study 

Parameterization option Description 
Chosen 

option 

DYNAMIC_VEG_OPTION Dynamic vegetation Table LAI 

CANOPY_STOMATAL_RE

SISTANCE_OPTION 
Canopy stomatal resistance Ball-Berry 

BTR_OPTION 
Soil moisture factor controlling 

stomatal Resistance 
Noah 

RUNOFF_OPTION Runoff and groundwater Schaake96 

SURFACE_DRAG_OPTION 
Surface exchange coefficient for 

heat 

1: M-O 

(Brutsaert, 

1982) 

SUPERCOOLED_WATER_

OPTION 

Supercooled liquid water in frozen 

soil 
NY06 

RADIATIVE_TRANSFER_O

PTION 
Radiation transfer Gap=1-Fveg 

SNOW_ALBEDO_OPTION Snow surface albedo CLASS 

PCP_PARTITION_OPTION 
Partitioning precipitation into 

rainfall and snowfall 
Jordan91 

TBOT_OPTION 
The lower boundary condition of 

soil temperature 
Noah 

TEMP_TIME_SCHEME_OP

TION 

The first-layer snow or soil 

temperature time schema 
Semi-implicit 
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2.8 Results  

2.8.1 Example: A simple model run results 

In this section, the results of a simple model run are provided as an example. In 

this model run, no data assimilation is conducted. The period of interest is September 

2013 and the area of interest is the Colorado Front Range. The resulting variables include 

(but are not limited to) surface soil moisture, root-zone soil moisture, runoff, and 

evapotranspiration. In the following figures, sample output variables including runoff and 

soil moisture are mapped. Runoff  is shown in Figure 2-6 . A cluster of high values is 

observed in the center of the domain. The yellow parts are where urbanized areas are 

located. Loveland is located in mid-north, Boulder is located in the center of the domain, 

and Denver is located in the mid-south of the domain. As expected, model simulations 

show high runoff values in urbanized areas that could be assigned to low infiltration rate 

which does not allow the water to penetrate to the ground. Soil moisture is mapped in 

Figure 2-7:. In this figure, spatial variations of soil moisture at different soil layers (on 

9/12/2018 when the flood reached the peak) are demonstrated. The cluster of low soil 

moisture values in the upper right of the domain is attributed to the soil type in that area. 

The soil in that area is mostly comprised of sand which drains very fast and justifies low 

soil moisture values. The temporal variation of area-averaged soil moisture is shown in 

Figure 2-8: Noah-MP example run results without data assimilation. It is noticed that soil 

moisture peak occurs near the rainfall peak which was reported (Gochis et al., 2015) to be 

on September 12
th

. It is noted that the simulated peak of soil moisture happens later than 
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the reported peak of rainfall. This is explained by the runoff generation mechanisms 

during this event. The rainfall peak was in the night of 11-12 and due to “infiltration 

excess
7
” runoff generation, water was ponded before penetrating to the ground. 

Therefore, soil moisture peak is expected to happen later than rainfall peak. Infiltration 

excess runoff generation during 11-12th September is also confirmed by Gochis et al. 

(2015). While this would be an approximate validation of the simulations, detailed 

validation of the model results is out of the scope of this study and other studies (cited in 

section 2.5) have addressed such evaluations.    

 

                                                 

7
 When rainfall rate exceeds infiltration rate 
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Figure 2-6: Noah-MP example run results without data assimilation. Spatial variation of 

simulated runoff on Sep 12, 2013, when rainfall was at the peak. The yellow parts 

indicate where the water is ponded due to infiltration excess over the urbanized areas  

The observed volumetric soil moisture peak according to Gochis et al. (2015) in 

Mountain Research Laboratory is around 0.45 (m
3
/m

3
) while the peak of soil moisture 

simulations is around 0.33 (m
3
/m

3
). This is attributed to ignoring the groundwater effects 

in this chapter due to the long spin-up period needed by the groundwater modules.  

 

 

Figure 2-7: Noah-MP example run results without data assimilation. Spatial variation of 

simulated soil moisture. The top layer (upper left) is 10 cm, the second layer (top right) is 

30 cm, the third layer (bottom left) is 60 cm, and the deep layer (bottom right) layer is 

100 cm. 
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Figure 2-8: Noah-MP example run results without data assimilation. Temporal variation 

of soil moisture, averaged over the area, converted to mm in September 2013.  

 

2.8.2 Synthetic Study 

Synthetic experiments are beneficial in DA studies (Moradkhani, 2008). The steps 

of building a synthetic study, also known as Observing System Simulation Experiment 

(OSSE) is illustrated in (Moradkhani, 2008). Unlike real-world DA studies, in a synthetic 
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study, the true soil moisture is known. This makes the comparisons easier. The synthetic 

experiment is developed according to the following steps:  

(1) Generate truth: the model is run and the simulated soil moisture is 

considered “truth” (as shown in Figure 2-9). 

 

Figure 2-9: Steps of creating true soil moisture in the synthetic study. Noah-MP is run 

through WRF-Hydro.  

 

(2) Generate synthetic satellite soil moisture: Observational error is 

incorporated into the true soil moisture from the previous step and is considered as the 

synthetic satellite observation. Similar to previous studies (Kumar et al., 2014; Yan et al., 

2017, 2018), the white noise for CCI satellite soil moisture is set to 0.04 m
3
/m

3
.  

(3) The OL run: Noah-MP is rerun for the period of interest with perturbed 

forcing which is called the open loop (OL) run. Perturbation is referred to adding noise to 

a variable.  
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(4) The DA run: Noah-MP is run for the same period but with the assimilation of 

synthetic satellite observations (DA) as depicted in Figure 2-10. To account for the 

uncertainty in forcing, additive errors with mean zero and standard deviation of 3˚C are 

added to air temperature. Precipitation is perturbed using a lognormal distribution with a 

coefficient of variation of 0.35. OL and DA runs share similar errors, initial states, and 

ensemble size (50 members) and all errors are assumed uncorrelated. The DA run uses 

PF-MCMC and incorporates synthetic satellite soil moisture obtained from step 2.   
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Figure 2-10: A schematic of synthetic soil moisture assimilation. The upper part shows 

the generation of the synthetic soil moisture data and the lower part is associated with 

assimilating the synthetic data. Noah-MP and WRF-Hydro are interchangeable in this 

figure. 

 

The results of the synthetic study are presented in the following. First, the open 

loop run with no data assimilation that accounts for the uncertainty of rainfall and 

temperature are presented in Figure 2-11. In this figure, the open loop run is an ensemble 

of model runs. The ensemble is created by perturbing the forcing data. Precipitation and 

temperature are perturbed for this OL run. The 50% predictive intervals are shown with 

dashed lines. The uncertainty of soil moisture simulations originated from forcing 

uncertainties is of interested.    
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Figure 2-11: Synthetic experiment results. Surface soil moisture simulations from the 

forward run (red line) and the open loop run (blue lines). The open loop run is an 

ensemble of model runs with perturbed forcings. The 50% predictive intervals are shown 

with dashed lines 

 

Then, the DA analysis was conducted. In DA, the synthetic soil moisture 

observations that are derived from the model forward run are assimilated into the model 

at an hourly step for 9/1/2013-9/31/2013. In the data assimilation, surface soil moisture is 

assimilated and only surface soil moisture is updated; however, updating soil moisture in 

other layers could be easily done as shown by Yan et al. (2015; 2017; 2018). Two 

methods are used for DA: EnKF and PF. Similar observations are used for both methods. 

The errors and the perturbations are also similar. The results of both DA methods and the 

OL run are then compared against the true soil moisture. Bias is then calculated as the 

absolute difference between the simulated soil moisture and true soil moisture. Biases are 

compared in Figure 2-12. In this figure, the temporal variation of hourly biases during the 

assimilation time is shown. It is observed that the open loop shows the higher bias than 

both DA methods. Between the two DA methods, PFMCMC is performing better than 

EnKF. It is noted that PF-MCMC shows higher bias at the beginning of the DA run. This 

is attributed to the spin-up period for the PF needs. It is also observed that around the 

peak of soil moisture, EnKF and OL biases are high while PF biases are lower. This is an 

indication of the effectiveness of PF-MCMC in simulating extremes.   
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Figure 2-12: Synthetic experiment results. Temporal variation of bias from the PF-

MCMC, the EnKF, and the OL runs. In PF and EnKF, similar observations are 

assimilated. Biases are averaged over the area. The simulation starts on 9/5/2013.    

 

 

The average biases of all three runs over the area and over September are 

compared in the bar chart of Figure 2-13. On average, PF-MCMC shows the lowest bias 

followed by the EnKF and the OL. OL, with an average bias of 0.17 (mm), demonstrates 

the highest average bias. Both DA techniques have lower biases than the OL run which 

highlight the added value of ensemble data assimilation. The spatial variation of biases is 

presented in Figure 2-14 for 9/12/2013 when the Colorado Front Range flood reached its 

peak. A cluster of high biases in OL are identified in the urbanized Loveland area located 
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in the mid-north of the basin. EnKF also shows high (but still lower than OL) bias in that 

area.   

 

 

Figure 2-13: Synthetic experiment results. Comparison of average biases in the (from left 

to right) EnKF, the OL, and the PF runs. Biases are spatiotemporally averaged over the 

domain and over the simulation period (September 2013).   
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Figure 2-14: Synthetic experiment results. Spatial variation of biases in the OL (top 

panel), the OL (middle panel), and the EnKF (bottom panel). Biases are calculated on 

9/12/203, at the peak of the rainfall.  
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Besides bias, the NIC is used to measure improvements of DA against OL. 

Positive values of NIC indicate improvements and negative values indicate degradation. 

Figure 2-15 shows the spatial distribution of the NICs of both methods. The left panel 

shows the improvements made by EnKF and the right panel shows the improvements 

made by PF-MCMC. In more than 88% of the area, the PF is improving the performance 

of Noah-MP in simulating soil moisture. These improvements reach up to 50% in the 

northern part of the domain. On the other hand, EnKF shows improvements in more than 

98% of the domain (positive NICs are observed in 98% of the area). These improvements 

are as high as 15%, on average. It is noted that the NIC values of PF-MCMC are higher 

than the NIC values of the EnKF. This indicates that higher improvements are achieved 

by PF-MCMC than the EnKF. This superiority of PF-MCMC to the EnKF is also proved 

in Figure 2-16. In this figure, the RMSEs of PF-MCMC and EnKF are compared through 

NIC. The NIC in his figure shows the improvements by PF-MCMC than the EnKF. 

Positive values indicate the superiority of PF-MCMC and negative values indicates that 

PF-MCMC performs worse than EnKF. The NIC is positive in 80% of the area. This 

means that in the majority of the domain, the PF-MCMC has a better performance than 

the EnKF.  
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Figure 2-15: Synthetic study results. The degree of improvements achieved by DA. EnKF 

improvements are mapped on the left and the PF improvements are mapped on the right. 

The improvements are quantified through Normalized Information Contribution.  
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Figure 2-16: Synthetic study results. Comparison of EnKF and PF performances. The 

performance is quantified by Normalized Information Contribution. Higher positive 

values indicate the superiority of PF over EnKF and negative values indicate the 

superiority of EnKF.  

 

2.8.3 Real Study 

After demonstrating the added value of the methodology through synthetic 

experiments, a real experiment was conducted. In this experiment, real satellite data are 

assimilated to simulate the flood of September 2013 in Colorado. CCI data were used 

because, at the time this flood event happened, SMAP had not been launched. In this 

section, the results of the real study are presented. Before DA, one needs to perform a 
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rescaling step in order to make the climatology of model and observations match. This is 

called a re-scaling step. For rescaling, CDF-matching approach which is very common in 

hydrology is used (Yan et al., 2018). The spatial distribution of observed soil moisture 

after rescaling is presented in. The cluster of low soil moisture values is also observed in 

the rescaled satellite soil moisture maps, as shown in this figure. This map is comparable 

with model simulations presented in the background map of Figure 2-17.    

Similar to the synthetic study, the real study was conducted for September 2013. 

Two DA techniques, EnKF and the PF-MCMC, were used. For both DAs, rescaled CCI 

satellite observations were assimilated into the Noah-MP model. To evaluate the 

performance of the DAs, the results are compared with gauge soil moisture observations 

throughout the domain. Gauges is shown as points in Figure 2-17. The numbers assigned 

to stations are the numbers used in this study.  

The performances of both DAs are quantified by NIC as shown in Figure 2-18. 

The upper panel shows the performance of EnKF for all the gages. Positive values show 

improvements by the DA and the higher NICs confirm higher improvements. Out of 27 

gauges, the EnKF improves soil moisture simulations in 17 gauges. These improvements 

are as high as 20% at the 26
th

 station. The PF-MCM, on the other hand, improves soil 

moisture simulations in 19 gauges and the improvements are as high as 30%. This shows 

that both DA techniques are capable of improving soil moisture simulations over the 

study area.  
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This NIC values of PF are generally higher than the NIC values of PF-MCMC 

which confirms the effectiveness of the PF-MCMC that the EnKF. The superiority of PF-

MCMC to the EnKF is also depicted in figure 2-19. In this figure, the improvement of 

PF-MCMC to the EnKF is shown. Out of 29 gauges, the PF-MCMC is performing better 

than the EnKF. The PF-MCMC improves the EnKF simulations by up to 15% at the 24
th

 

station.            

 

 

Figure 2-17: Background: Rescaled CCI satellite soil moisture in Colorado Front Range 

averaged over all hours in September 2013 over the study area. Points: Location of in-situ 

soil moisture gauges. Stations are labeled with the numbers assigned to stations for the 

analyses of this chapter.   
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Figure 2-18: Real experiment results. Performance evaluation of EnKF (the top panel) 

and the PF-MCMC (the bottom panel). Performance is quantified by NIC. Positive values 

show improvements made by DA. Higher values of NIC are associated with higher 

improvements. The x-axis shows the station number.  
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Figure 2-19: Real experiment results. Performance evaluation of PF-MCMC over the 

EnKF. Performance is quantified by NIC. Positive values show improvements made by 

PF-MCMC. Higher values of NIC are associated with higher skills of PF-MCMC to 

EnKF. The x-axis shows the station number. 
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2.9 Summary 

Noah-MP is the core column land surface model in the National Water Model that 

has been run operationally by the National Water Center since 2016. Noah-MP is a rather 

new LSM and it has attracted attention because it has been coupled with atmospheric 

models and its inclusion into the NLDAS project has been considered. The Noah-MP 

model requires atmospheric variables such as rainfall and temperature as forcing inputs 

and the resulting outputs include runoff, evapotranspiration and soil moisture simulations. 

Soil moisture, in this study, is of particular interest because it is a critical variable in 

forecasting atmospheric variables. Additionally, it is an integral part of drought and flood 

prediction. Besides using a land surface model (such as Noah-MP) to simulate soil 

moisture, one could use satellite or gauge observations to measure soil moisture. Instead 

of using either observations or models, research has suggested using both. Combination 

of these two is possible through data assimilation techniques. Numerous data assimilation 

techniques have been introduced in the mathematics, atmospheric and hydrologic 

communities. All these techniques are comprised of two steps: estimations and update. In 

the estimation step, a dynamic model is run and the resulting variable of interest is 

compared against observations. Next, in the update step, model simulations and 

observations of that variable are combined and then the model is updated accordingly. 

Two frequently used DA techniques in hydrology are the Ensemble Kalman Filter 

(EnKF) and the Particle Filter (PF). Assimilation of soil moisture observations into a land 

surface model has been studied frequently; however, limited research has been conducted 
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to study the performance of DA techniques on the Noah-MP model. Successful 

implementation of data assimilation on this model needs to be demonstrated. Therefore, 

this study aims at assessing the performance of DA techniques on Noah-MP. This study 

presents successful implementations of EnKF and PF on Noah-MP. It was shown that the 

performance of Noah-MP in simulating soil moisture is further improved by DA. 

Moreover, comparison of two commonly used DA techniques is performed in this study 

and it was concluded that, in the area of interest, the PF shows a higher skill in simulating 

soil moisture than the EnKF. Additionally, this study proposed an algorithm for 

implementing any ensemble data assimilation method on the Noah-MP model. This 

algorithm is designed to reduce the computational time in data assimilation by using as 

many computational resources as possible. This algorithm is designed for supercomputers 

and clusters of multiple computer nodes. The results of this study are beneficial for any 

future research on the assimilation of observations into the Noah-MP model, for 

improving the current flood forecasting skills and for improving weather prediction skills. 

The NCEP and the NWC could particularly benefit from the results of this study for 

operational forecasting purposes. 
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2.10 Conclusion, discussion, and future work 

The main highlights of this study are as follows: 

(1) Assessing the performance of DA techniques on the Noah-MP model. 

Successful implementations of two data assimilation techniques including the Ensemble 

Kalman Filter and the Particle Filter Markov Chain Monte Carlo were demonstrated in 

this study. This could guide future implementation of DA on Noah-MP regarding 

estimations of errors, perturbation of forcing inputs/soil moisture simulations/ soil 

moisture observations, and efficiently implementing any DA through parallel computing.   

Additionally, climate modelers could benefit from the results of this chapter for 

more accurate weather predictions resulted from a more accurate representation of soil 

moisture. More accurate soil moisture provides a better initial condition for climate 

models like WRF. The importance of improved initial conditions is also highlighted by 

Walker and Houser (2001). Moreover, a better representation of soil moisture provides 

flood forecasting models with a more accurate initial condition which ,in turn, results in 

more effective forecasts. This will help improve real-time flood forecasting systems such 

as the NWM for which Noah-MP is the core LSM. 

(2) Performances of two data assimilation techniques were compared in this study 

and it was shown that the PF-based DA method had a higher skill in improving soil 

moisture simulations. Previous research on such comparisons was conducted on 

hydrologic models such as the VIC model and the HyMod model and this study 

complements them by conducting such analysis on the Noah-MP land surface model.  
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(3) This study proposed a parallel algorithm for ensemble data assimilation of 

satellite soil moisture into the Noah-MP model. This algorithm aims at decreasing the 

computational time by simultaneously using multiple computational nodes. The 

algorithm is suitable for high-performance-computing infrastructure such as 

supercomputers and clusters of individual CPUs. This algorithm could be used in future 

research on Noah-MP for assimilation of any kind of observations. Successful 

implementation of this algorithm was demonstrated for simulating soil moisture during a 

significant flood in the Colorado Front Range.   

For future extensions of this study, the spatial dependence of adjacent cells could 

be considered. The DA is implemented on cells separately (cells are independent of each 

other) in this chapter. A future extension of this work can consider preserving the spatial 

variation of model simulations and transferring information from the assimilation of one 

cell to another. Also, the introduced parallel data assimilation and the error settings in this 

work could be used for assimilation of vegetation-related observations.  

Another extension of this study could conduct similar experiments on more 

watersheds with various characteristics (such as low flows, high flows, and droughts) 

with longer durations to further support the results of this study.   
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3 A Multivariate Ensemble data assimilation in the WRF-Hydro: Potential DA 

integration to the National Water Model 

 

3.1 Abstract  

Performance of the ensemble data assimilation techniques on the community 

WRF-Hydro model is evaluated in this chapter. WRF-Hydro is a distributed land surface 

model that integrates column land surface models with the surface, subsurface, and 

channel routing modules. Three scenarios are defined here. First, satellite soil moisture 

observations are assimilated into WRF-Hydro using a univariate Ensemble Kalman Filter 

technique. The results of this scenario indicate that the DA improved WRF-Hydro’s skill 

in simulating soil moisture; however, it is found that the soil moisture assimilation 

information is not significantly informing the outlet streamflow. Next, streamflow 

observations at USGS gauges are assimilated into WRF-Hydro using an Ensemble 

Kalman Filter algorithm. Significant improvements in streamflow simulation skill are 

observed; however, the model is not able to propagate the streamflow information to soil 

moisture. Finally, joint assimilation of soil moisture and streamflow is implemented 

using a multivariate EnKF and considerable improvements in both variables are achieved. 

The methodology could guide future research on WRF-Hydro and flood forecasting. 

Operational agencies such as the National Water Center, Offices of Water Prediction, and 

River Forecast Centers could also benefit from the outcomes of this chapter for flood 

modeling and forecasting.  
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3.2 Highlights 

(1) Separate assimilations of satellite soil moisture and streamflow observations 

into the community WRF-Hydro model that uses Massage Passing Interface protocols are 

demonstrated.  

(2) The ability of WRF-Hydro in transferring the assimilation information to other 

hydrologic variables is investigated. 

(3) Improved soil moisture and streamflow simulations are achieved by 

employing a multivariate Ensemble Kalman Filter technique that simultaneously 

assimilates soil moisture and streamflow observations.  

3.3 Introduction 

WRF-Hydro is a hydrologic model recently developed  by the National Center for 

Atmospheric Research (NCAR) (Gochis et al., 2015; 2018). It has been adopted by the 

National Weather Service (NWS), the National Water Center (NWC) and Office of 

Water Predictions (OWP). The model is the midst of its operational transition to River 

Forecast Centers (RFC). WRF-Hydro is a combination of modules for land processes. For 

many processes multiple options are available for the user to choose from. For example, 

for the core column land surface model, the user can choose the Variable Infiltration 

Capacity (VIC) model, the Noah LSM, The National Aeronautics and Space 

Administration (NASA)’s Land Information System (LIS), Community Land Model 

(CLM), or Noah-MP (Noah with multi parameterization option).  The output variables of 
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the column land surface model are passed to hydrologic routing modules including the 

surface and subsurface routings. The results of the routing are first passed back to the 

column land surface model and then passed to a channel routing model. For channel 

routing, the user can choose between commonly used methods of Muskingum-Cunge, 

Muskingum, or diffusive wave. The distinct features of WRF-Hydro are as follows: 

(1) It is the core land surface model in the National Water Model: The National 

Water Model (NWM), operated by the National Water Center, has been in operation 

since 2015 with the goal of delivering flood forecasts for the nation at 2,700,000 river 

reaches. The NWM is a specific configuration of WRF-Hydro. Once the WRF-Hydro 

model is run over customized watersheds of the National Hydrographic Dataset Plus
8
 

(NHDPlus) network with specific datasets as inputs, it is called the NWM.  

(2) It can be coupled with the Weather Research and Forecast (WRF) climate 

model: WRF is a well-known atmospheric model used for meteorological prediction. 

WRF-Hydro users have the option of running the model in an online mode which means 

running the model coupled with WRF. In the online mode, the land surface model results 

will have feedback into the WRF model and vice versa.  This coupling will be significant 

for the atmospheric community as it will allow the interactions between land surface and 

the atmosphere more accurately. These interactions are shown to have a significant effect 

on climate predictability (Niu et al., 2011).  

                                                 

8
 NHDPlus is national geospatial surface water framework developed and maintained by the U.S. 

Geological Survey (USGS) and the U.S. Environmental Protection Agency (EPA) 
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(3) Flexibility in modeling: WRF-Hydro users are able to choose between 

multiple options for different processes. These processes include the core column land 

surface model and the routing method. Additionally, switches are provided to turn 

(surface, subsurface, and channel) routing and groundwater modules on and off. Also, if 

Noah-MP is chosen as the column land surface model, one can choose between 1080 

different schemes for modeling land surface processes.  

Some output variables of WRF-Hydro include surface latent heat flux, canopy 

moisture content, snow depth, deep soil drainage, ground heat flux, and soil moisture. 

Among these variables, soil moisture is of particular interest in this study because of the 

following reasons: (1) The water stored in the land (as soil moisture) during a wet season 

will feedback to the atmosphere in the dry season through evapotranspiration (Niu et al., 

2011). Soil moisture is persistent meaning that the water stored in soil needs weeks to 

months to evaporate. Therefore, soil moisture can provide information about the future of 

the atmosphere. (2) Soil moisture is a crucial variable in disastrous events. It determines 

onset, duration, and termination of agricultural droughts (Ahmadalipour et al., 2017b; 

Madadgar and Moradkhani, 2013; Yan et al., 2017; Yan et al., 2018) and it also is one of 

the essential predictands of (flash) floods (Cenci et al., 2017). Floods, in particular, are 

affected by soil moisture (Komma et al., 2008) as soil moisture is the main factor to 

determine if precipitation penetrates to the ground or if it flows as runoff. Therefore, 

improving soil moisture simulations has been the focus of several studies (Oglesby and 

Erickson III, 1989; Rebel et al., 2012; Sheffield et al., 2004). An accurate representation 
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of soil moisture would be beneficial for a variety of purposes ranging from emergency 

planning to resource allocation and disaster prediction.   

An alternative in obtaining soil moisture is using in-situ or remotely-sensed 

measurements. In-situ soil moisture data are sparse and are not uniformly distributed 

across the CONUS. Another way of measuring soil moisture is through remote sensing 

(Brocca et al., 2011; Cenci et al., 2017; Entekhabi et al., 2010; Lacava et al., 2012). There 

are shortcomings associated with each of these procedures in measuring soil moisture. In 

situ measurement, although more accurate, they are limited in spatial representativeness. 

Remotely sensed satellite observations, although with good spatial coverage, are limited 

in the spatial and temporal resolution. Therefore, hydrologic models at a better resolution 

and coverage become essential as another source of information for soil moisture 

estimations. Hydrologic models, on the other hand, are subject to multiple uncertainties 

including uncertainties associated with parameterization, model structure, initial 

condition, and meteorological variables. These uncertainties lead to uncertain soil 

moisture simulations. Instead of using either measurements or land surface models, 

research has shown that their integration results in more accurate soil moisture 

simulations (Daescu and Navon, 2004; DeChant and Moradkhani, 2012; Moradkhani et 

al., 2012, 2005a; Zupanski et al., 2006). Specifically, using soil moisture observations to 

inform land surface models are suggested. Such integration is possible through data 

assimilation (DA) techniques (Pathiraja et al., 2016a, 2016b). DA helps reduce and 

quantify the uncertainties associated with LSMs. Commonly used DA techniques 
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employed in earth system modeling fall into two categories of Kalman Filter-based (KF) 

methods (Moradkhani et al., 2005b), Particle Filter-Based (PF) methods (Moradkhani et 

al., 2012), and Variation DA (Daescu and Langland, 2017; Shaw and Daescu, 2016). All 

these techniques are comprised of two steps: estimation and update. In the estimation 

step, a dynamic model is run and the resulting variable of interest is compared against 

observations. Next, in the update step, model simulations and observations of that 

variable are combined and then the model is updated accordingly. Another DA technique 

is Nudging (Gochis et al., 2018). Nudging is a simple method of data assimilation that 

inserts an observed state variable into the model. Currently, the NWM employs a simple 

nudging algorithm to assimilate USGS observed streamflow into the WRF-Hydro model. 

Although ensemble data assimilation techniques are known to be more effective, their 

implications on this model have not been reported yet.   

In the majority of DA studies, improving the same variable that is assimilated is 

of interest (Yan et al., 2017, 2015). In some studies, this variable is soil moisture (Yan et 

al., 2017; Yan et al., 2018) and in some others, it is streamflow (Moradkhani et al., 2012, 

2005b). However, research is still needed on propagating the assimilated information to 

other hydrologic variables. While Scipal et al. (2005) and Aubert et al. (2003) reported 

successful propagation of soil moisture assimilation information to other variables such 

as streamflow/runoff, Chen et al. (2011), Parajka et al. (2006), and Marc Etienne Ridler 

et al. (2014) fail to do so. Alvarez-Garreton et al. (2014) reported marginal improvements 

in streamflow simulations after they tested three different data assimilation methods to 
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assimilate soil moisture observations into a hydrologic model. Yan and Moradkhani 

(2016) also considered univariate and multivariate assimilating of soil moisture and 

streamflow to improve SAC-SMA simulations. They did not observe improvements in 

soil moisture simulations when they assimilated streamflow and reported improved soil 

moisture simulations when they assimilated both satellite soil moisture and streamflow. 

Aubert et al. (2003) observed a significant improvement in streamflow simulations when 

they assimilated station soil moisture in a lumped model. They observed the most 

significant improvements during flood events. They also observed improvements in the 

forecasting mode. They conclude that for normal conditions, streamflow assimilation is 

sufficient while for high-flows and extreme hydrologic conditions, multivariate 

assimilation of streamflow and soil moisture is required. When they increased the 

prediction lead-time to 1-3 days, they noticed that the effectiveness of soil moisture 

assimilation remains constant. Similarly, Chen et al. (2011) showed that assimilation 

(EnKF) of surface soil moisture into the semi-distributed SWAT model only has limited 

success in updating streamflow. They attributed this failure to the inability of the EnKF 

to correct the biases in SWAT-predicted streamflow components. Likewise, Clark et al. 

(2008) failed to propagate information through data assimilation to the neighboring cells 

in a distributed hydrologic model (the TopNet model) and they attributed this to the 

inability of the model in modeling spatial variability of hydrologic processes. 

Therefore, with the overarching goal of further improving the current flood 

modeling skills, the objectives of this study are as follows: 
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(1) Assessing the performance of ensemble data assimilation methods in 

assimilating observed streamflow into the community WRF-Hydro model.  

(2) Assessing the performance of ensemble data assimilation methods in 

assimilating satellite soil moisture into the community WRF-Hydro model.  

(3) Assessing the effects of soil moisture (streamflow) assimilation on streamflow 

(soil moisture).   

(4) Comparing the performance of univariate and multivariate data assimilation 

on the WRF-Hydro model. 

The improved soil moisture and streamflow simulating skills of this research will 

benefit the hydrologic science community in flood modeling and forecasting. One of the 

implications of this study is improved soil moisture simulating skill which benefits the 

atmospheric science community in improving climate predictions. Finally, the results of 

this research directly benefit operational flood forecasting agencies especially the NWC. 

The findings and the methodologies of this study could help the NWC in planning for the 

future versions of the NWM. This could start the important discussion of including 

satellite information and ensemble data assimilation for flood forecasting in the NWM. It 

could also help the NWC improve their algorithms to more complicated (and more 

accurate) methods such as ensemble data assimilation techniques. The rest of the chapter 

is organized as the following. First, an introduction to the study area and data is presented 

which is followed by the methodology section. In the methodology section, the DA 

technique and the parallel DA algorithms are illustrated. Consequently, results are 
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presented and discussed and the chapter concludes with a discussion on the values and 

suggestions for future works. 

3.4 Study area and data 

3.4.1 Study area 

This chapter has two study areas. The first study area is on Croton-on-Hudson 

River in New York as shown in Figure 3-1. The elevation of this area is mapped in Figure 

3-2. The second study area is located in Huntsville, Alabama as shown in Figure 3-3. 

These areas were chosen due to multiple limiting factors: (1) since this study attempts to 

replicate the operational flood forecasting in the NWM, an area for which WRF-Hydro is 

already calibrated had to be studied. WRF-Hydro has already been calibrated by the 

WRF-Hydro team at NCAR for around 100 watersheds over the U.S. The calibrated 

domain files were acquired from NCAR. The selected area had to be calibrated with good 

coverage of USGS and in-situ soil moisture gauges. Additionally, lakes and reservoirs 

had to be avoided since reservoir information is not available to the public. Another 

important factor in choosing a study area was the size of the area. Examinations of the 

calibrated watersheds led to choosing an area in Huntsville, AL and Croton study area 

was adopted from WRF-Hydro’s example cases.  
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Figure 3-1: The location of the study area in Croton, NY. 
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Figure 3-2: The elevation of the studied domain in Croton, NY.  
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Figure 3-3: The location (the top panel) and elevation (the bottom panel) of the studied 

area in Huntsville, AL. 
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The high-resolution terrain routing file required by WRF-Hydro needs the 

location of streams in the area. Figure 3-4 shows the complete network of streams in the 

domain files of the model for the area in Huntsville. The red circle indicates the location 

of the outlet USGS gauge. The colors of the streams indicate their Strahler stream order 

(Strahler, 1952). In Strahler ordering, all reaches are assigned to integer numbers (stream 

order) greater than zero. The reaches that do not have any junctions in the upstream are 

assigned to one. At a junction of two streams, if the two upstream orders are the same, the 

downstream order would be that number plus one. Otherwise, if the upstream orders are 

not similar, the downstream order would be equal to the greater number.   

 

Figure 3-4: Strahler stream order in the high-resolution terrain file of WRF-Hydro model. 

The red circle indicates the location of the outlet point where USGS measurements are 

available. 
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3.4.2 Streamflow 

Streamflow was obtained from USGS streamflow gauge database. Gauge 

numbers are listed in Table 3-1.  

Table 3-1: USGS gauge information for two study areas in this chapter 

STUDY AREA GAUGE NUMBER 

HUNTSVILLE, AL 03574100 

HUNTSVILLE, AL 03574500 

CROTON, NY 1374559 

CROTON, NY 1374581 

CROTON, NY 137462010 

 

3.4.3 Atmospheric forcings 

The atmospheric forcings for WRF-Hydro are similar to those of Noah-MP 

introduced in the previous chapter. The LSM model is forced with surface meteorological 

data including rain rate (mm/s), wind speed (m/s), surface pressure (Pa), temperature (k), 

and short and longwave radiation (W/m
2
) obtained from the Phase II North American 

Land Data Assimilation System (NLDAS-2) (Xia et al., 2012b) gridded to the 1/8˚ 

resolution. However, a preprocessing step is required before running the model to rescale 

the projection and resolution of grids from NLDAS to WRF-Hydro domain files. This 

preprocessing is conducted using WRF-Hydro re-gridding tools available on their 

website. The required fields and units are similar to the Noah-MP model input 

requirements discussed in the previous chapter. 
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3.5 Methodology 

3.5.1 WRF-Hydro 

The land surface model used in this chapter is the community WRF-Hydro model 

(Gochis et al., 2015, 2018). For this chapter, the latest version of the model, version 5, 

released on April 13, 2018 was utilized. WRF-Hydro (Weather Research and Forecast-

Hydrological modeling system) has been developed by NCAR with the goal of 

facilitating improved terrestrial hydrologic processes modeling and is an extension of 

NCAR Weather Research and Forecast (WRF). WRF-Hydro is a modeling architecture 

facilitating coupling of various hydrological processes (Gochis et al., 2018). The model is 

in FORTRAN90 and allows users to make modifications into the model. The initial 

version of the WRF-Hydro model was introduced to the community as “Noah-

distributed” (Gochis and Chen, 2003). Gochis and Chen (2003) discussed mapping land 

surface condition from a coarse resolution to a terrain routing grid at a finer resolution. 

WRF-Hydro is now evolved to version 5 and is capable of coupling multiple land surface 

models to various routing options and parameters. An important feature about WRF-

Hydro, that highlights the importance of more research around it, is that National Oceanic 

and Atmospheric Administration (NOAA), in pursuit of increasing the nation’s water 

prediction skill, uses the WRF-Hydro model to predict stream flooding over the 

Continental United States. NOAA operationally uses the National Water Model (NWM) 

which is a specific configuration of WRF-Hydro with specific forcing datasets and 

methodologies. Multiple atmospheric models such as CAM/CESM or WRF are capable 
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of being coupled with land surface models (such as VIC, Noah, Noah-MP), groundwater 

models (such as HsB, ParFlow, VIC), and hillslope/routing models (such as VIC, 

TOPOFLOW).  At the current version, WRF-Hydro can be coupled with WRF 

atmospheric model. For LSM, Noah and Noah-MP options are provided. For 

groundwater model, DHSVM is provided. For hillslope/channel routing, CASC2D is 

provided, and for water management, the linear reservoir is provided. Figure 3-5 

illustrates the steps inside the model. After the LSM is run, the output variables are 

passed to routing modules such as surface routing and subsurface routing. The results of 

the routing processes (depending on the user choice) may be passed back to the column 

land surface model (two-way coupling). Then, the results are delivered to a channel 

routing model. For channel routing, the user can choose between commonly used 

methods of Muskingum-Cunge, Muskingum, or diffusive wave. Figure 3-6 is a simple 

representation of the model’s required files, outputs, and procedure. Domain files are 

required by any WRF-Hydro run. The files can be obtained from WRF-Hydro’s 

preprocessing tools. Restart files are required in case of “warm start” which means that 

the initial states are known. When the initial states are not known, the run is called “cold 

start”.   
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Figure 3-5: Schematic of WRF-Hydro structure (Gochis et al., 2018) 

 

 

Figure 3-6: The procedure and required files to run the WRF-Hydro model 
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3.5.2 Data Assimilation 

Two DA methods are discussed in this study including EnKF and PF. In this 

chapter, Ensemble Kalman Filter (EnKF) is employed. For details of the EnKF, please 

see section 2.6.1.2 in the previous chapter. When a hydrologic model is integrated with 

soil moisture observations another hydrologic variable such as streamflow can be 

updated. Both methods have been successfully implemented in hydrologic modeling. For 

example, Clark et al. (2008) discussed the application of the EnKF for assimilating 

streamflow observations and updating model states. They proposed transforming 

streamflow into a log space before computing the error covariance. Yan and Moradkhani 

(2016) used PF, assimilated streamflow and updated state variables. 

3.5.3 High-performance computing 

Parallel Computing or Parallel Processing is an integral part of analyses with 

WRF-Hydro and the NWM, especially if used for data assimilation. Implementing 

sequential data assimilation in WRF-Hydro is very expensive. The computational burden 

becomes even more severe in operational flood forecasting in the NWM where WRF-

Hydro is being run in more than 2,000,000 reaches every hour. Thus, many agencies such 

as NWC, NOAA, NWS, and NCAR are using parallel computing for their analyses. The 

parallel computing algorithm used in this chapter is similar to the algorithm introduced in 

the previous chapter. Figure 3-7 shows a schematic of this algorithm. For more 

information about the detail of this algorithm, readers are referred to 2.6.2 in the previous 

Chapter.  
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Figure 3-7: The algorithm of the parallel data assimilation methodology applied in this 

chapter. 

 

3.5.4 Performance measures 

In this chapter, five commonly used performance measures (Gupta et al., 2009) 

including Root Mean Square Error (RMSE), Normalized Information Contribution 

(NIC), Nash-Sutcliff Efficiency criterion (NSE), Kling-Gupta Efficiency (KGE), and 

Bias are employed. These measures are defined as the following. 
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Where y indicates the variable of interest (soil moisture or streamflow in this 

dissertation), o indicates “observed” and p indicates “predicted”. N is the length of the 

dataset, r is the linear correlation coefficient, α is the measure of variability in observed 

and simulated values, and β is the ratio between mean simulated and mean observed 

values. For more information about the performance measures specially KGE, readers are 

referred to Gupta et al. (2009) 

3.6 Results 

The model is capable of running at a daily time step; however, the author’s initial 

research showed that WRF-Hydro sometimes fails to close the water balance if it is run at 

a daily time step. In addition, it is noticed that model simulations are more accurate at an 

hourly time step. Therefore, a time step of one hour was chosen for the entire analysis. To 

assess the effects of ignoring the groundwater, the model was tested with and without the 

groundwater module. It was observed that ignoring the groundwater interactions results 
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in a dry bias in soil moisture simulations. However, due to the added computational 

complexity of the model, and the long spin-up time required for the groundwater module, 

this bias is acknowledged and ignored for the analyses. 

The results of both synthetic and real experiment are presented in this section. 

First, the results of running the model forward for the period of interest are discussed. 

Next, assimilation scenarios are explained. Finally, the real study results are presented 

and discussed.   

3.6.1 LSM setup and preprocessing 

NCAR has calibrated WRF-Hydro (for the NWM) for multiple watersheds in the 

United States. The subject areas in this study are from two of the calibrated watersheds 

obtained from NCAR by request. For the spin-up, while 8 years is suggested for soil 

moisture (Cai et al., 2014b), 10 years were left in this study. The schemas used for the 

Noah-MP model are similar to those of the previous chapter except that for the vegetation 

dynamic, option 4 is chosen (it is the default for WRF-Hydro V5) which means that 

vegetation dynamic is off and it uses Leaf Area Index (LAI) but maximum vegetation 

fraction is considered. 

Domain files were acquired from the NCAR team by request. It should be noted 

that a cutout of the NWM was requested which includes all the required files for the 

model run. Users that are interested to run the model outside the framework of the NWM 

need to generate the DOMAIN files through available pre-processing tools(Gochis et al., 

2018). 
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It should be noted that the spatial resolution of the simulations is 1 (km) and the 

temporal resolution is 1 hour. The simulation in the Huntsville domain is conducted for 

the period of January 1, 2018 to February 28, 2018. For the Croton, NY domain, the 

model is run with similar resolutions for August 2011.  

3.6.2 Characterizing the uncertainties  

Characterization of uncertainty in this chapter is similar to the previous chapter. 

Precipitation is assumed to follow a lognormal distribution with mean zero and 

coefficient of variation of 25%. Temperature errors are assumed homoscedastic with 

mean zero and standard deviation of 3 degrees as considered in the previous data 

assimilation studies (Ahmadalipour et al., 2017b; Yan et al., 2017). For the synthetic 

experiment, it is considered that the model is perfect and that there is no model error. For 

the real study, model error is 10%. Finally, the observation error for soil moisture is 0.04 

(m
3
/m

3
) and it is 15% for streamflow observations, assuming heteroscedasticity in errors. 

3.7 Synthetic study  

Three scenarios for the synthetic experiment are studied. In all scenarios, the 

effects of DA on both soil moisture and streamflow are assessed. First, only synthetic soil 

moisture observations are assimilated using a univariate EnKF. Second, streamflow is 

assimilated using a multivariate EnKF. Finally, both soil moisture and streamflow are 

assimilated employed a multivariate EnKF. A schematic of the synthetic study steps is 

shown in Figure 3-8.  
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Figure 3-8: A schematic of the synthetic study algorithm. In this case, synthetic discharge 

is assimilated into the model. The other version of this figure, Figure 2-10, shows 

assimilation of synthetic soil moisture.  

 

3.7.1 Univariate soil moisture assimilation 

This section explains the assimilation of gridded soil moisture simulations in the 

WRF-Hydro model. Soil moisture observations are derived from the model forward run 

(synthetic observations) with an assumed error of 0.04 (m
3
/m

3
). First, the effects of 
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assimilation on soil moisture simulations are assessed and then the effects on streamflow 

are evaluated. Univariate EnKF is used with an ensemble size of 100.  

Area-averaged DA soil moisture simulations are compared against the true soil 

moisture in Figure 3-9. RMSE, NSE, KGE, and BIAS are calculated. The results of the 

RMSE shows that the DA decreases the error by 0.02 (mm) and the BIAS in DA is lower 

by 15 (mm). The NSE and KGE of DA are also marginally higher than those of DA.  

 

 

Figure 3-9: Univariate synthetic soil moisture assimilation results. Performance of OL 

and DA in simulating soil moisture in the Huntsville domain. Performance is measured 

by RMSE, NSE, KGE, and BIAS.  
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Cell-wise comparisons of the performance of DA over OL are shown in the 

following. Figure 3-10 shows the spatial variation of RMSE in the area. It is observed 

that RMSE of the OL is significantly higher than the RMSE of DA in the south of the 

domain. Also, in the main watershed, the DA RMSE map is darker blue which indicates 

lower values of RMSE. This confirms that the DA outperforms the OL, especially in the 

northeast and south part of the area. In the same figure, a scatter plot is presented where 

cells are indicated by points. OL and DA RMSEs are compared in this plot. Departure 

from the 1:1 (gray) line shows the difference in RMSEs. Points that fall above the 1:1 

line, indicate that in those cells, DA is outperforming OL. Points below the 1:1 line 

indicate that the OL outperforms the DA. It is noted in this plot that all points are located 

above the 1:1 line and highlight the superiority of the DA.  Figure 3-11, Figure 3-12, and 

Figure 3-13 show the same but for NSE, BIAS, and KGE, respectively. As confirmed by 

all these figures, the DA is outperforming the OL in all cells of the area. 
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Figure 3-10: Univariate synthetic soil moisture assimilation results. Spatial variation of 

RMSE in Huntsville, AL from the OL run (upper left panel) and from the DA run (upper 

right panel). In the scatter plot, cells are indicated by points. The 1:1 gray line indicates 

equal RMSE of OL and DA. The area above the 1:1 line shows the outperformance of 

DA and the area below the 1:1 line shows the outperformance of OL.   
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Figure 3-11: Univariate synthetic soil moisture assimilation results. Spatial variation of 

NSE in Huntsville, AL from the OL run (upper left panel) and from the DA run (upper 

right panel). In the scatter plot, cells are indicated by points. The 1:1 gray line indicates 

equal RMSE of OL and DA. The area above the 1:1 line shows the outperformance of 

OL and the area below the 1:1 line shows the outperformance of DA.    
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Figure 3-12: Univariate synthetic soil moisture assimilation results. Spatial variation of 

BIAS in Huntsville, AL from the OL run (upper left panel) and from the DA run (upper 

right panel). In the scatter plot, cells are indicated by points. The 1:1 gray line indicates 

equal RMSE of OL and DA. The area above the 1:1 line shows the outperformance of 

DA and the area below the 1:1 line shows the outperformance of OL.   
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Figure 3-13: Univariate synthetic soil moisture assimilation results. Spatial variation of 

KGE in Huntsville, AL from the OL run (upper left panel) and from the DA run (upper 

right panel). In the scatter plot, cells are indicated by points. The 1:1 gray line indicates 

equal RMSE of OL and DA. The area above the 1:1 line shows the outperformance of 

OL and the area below the 1:1 line shows the outperformance of DA. 
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The degree of improvement by DA over OL is indicated by NIC. The spatial 

distribution of NIC is shown in Figure 3-14, the upper panel. Positive (up to 1) NIC 

values indicate DA improvement over OL and negative values indicate that DA degrades 

the OL. Higher values of NIC indicate a better performance. As noted in Figure 3-14, in 

99.89% of the area, the NIC is positive showing improvement and only 0.11% of the area 

shows degradation. As shown by the histogram in the lower panel, the average 

improvement is about 20%. It reaches 80%. The west part of the area shows around 10% 

improvement. The lower improvements in this area can be attributed to the urbanization 

effect since Huntsville is located in that area. This may imply poor model performance in 

urban areas.  
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Figure 3-14: Univariate synthetic soil moisture assimilation results. Level of 

improvement by the DA over OL is indicated by NIC. NIC for the Huntsville, AL 

domain is mapped in the top panel. The histogram of all cells is plotted in the bottom 

panel. 
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A similar methodology was used to evaluate the performance of EnKF DA in the 

Croton area. OL and DA RMSE, NSE, KGE, and BIAS are compared in Figure 3-15. In 

this figure, scatter plots are presented. Cells are shown as points in these plots. The gray 

lines indicate the 1:1 line where the measure in OL equals that of DA. For RMSE and 

BIAS, the area above the line shows that the DA is outperforming the OL and the area 

below the line shows that the OL is outperforming the DA. For NSE and KGE plots, the 

points that fall above the 1:1 line indicate the outperformance of OL while the points that 

fall below the line indicate the opt performance of DA.  

The degree of improvements by DA over OL is further assessed by NIC, as 

mapped in Figure 3-16 and summarized in Table 3-2. Positive NIC confirms that DA 

improves the model simulations while negative NICs indicate that DA degrades the 

model simulations. Higher values of NIC show a higher degree of improvement. It is 

noted that NIC is positive over the area which indicates that the DA outperforms the OL 

in the majority of the grid cells. The degree of improvement by DA over OL in this area 

is lower than the degree of improvement in the Huntsville area. Improvements in this area 

reach up to 20%. In 94.5% of the area, improvement was observed and in the remaining 

5.4% of the grid cells, 0 to 10% degradation by DA was observed. This indicates that in 

those cells, DA does not improve the model simulations. An analysis of the temporal 

variation of biases (not shown) indicated that the OL has higher bias around the peak of 

the flood and early in the recession limb. This confirms the effectiveness of the DA in 

modeling the extremes.  
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Figure 3-15: Univariate synthetic soil moisture assimilation results. Comparisons of OL 

and DA RMSE (upper left), NSE (upper left), KGE (lower left), and BIAS (lower right) 

in the Croton, NY area are presented in the scatter plots. 

 

Table 3-2: Univariate synthetic soil moisture assimilation results. The spatial mean of 

performance measures of OL and DA over the domain in Croton, NY. 

 RMSE NSE KGE BIAS 

OL 0.0704 0.9995 0.9945 6.7165 

DA 0.0662 0.9996 0.9942 6.4511 
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Figure 3-16: Univariate synthetic soil moisture assimilation results. The degree of 

improvement made by DA in the Croton, NY area is mapped. In 94.5% of the cells, the 

NIC is positive (improvements by DA) and in 5.4% of the area, the NIC is negative 

(degradation from DA).  

 

3.7.1.1 Effect of univariate soil moisture assimilation on discharge 

Since the DA adjusts the soil moisture state variable, it is expected that the 

updated states will transfer to streamflow through the routing component of the WRF-

Hydro model. In this section, the effect of soil moisture DA on streamflow is discussed. 

Similar to the previous results, synthetic soil moisture is assimilated into the model. The 

adjustment made by DA to soil moisture at every time step is expected to change the 
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streamflow values at the next time steps. Therefore, during the DA run streamflow was 

also recorded. The resulting streamflow simulations were then compared with true 

streamflow. The performance measures are presented in Table 3-3. The first two rows 

indicate the Huntsville domain the rest of the rows indicate the Croton area.   

Table 3-3: Univariate synthetic soil moisture assimilation results. The effects of soil 

moisture assimilation on streamflow are presented. The first two rows indicate the 

measures for the Huntsville domain and the lower three rows show the measures for the 

Croton area. OL and DA RMSE, NSE, BIAS, and KGE are shown in the columns. The 

last column shows NIC, the improvement made by DA over OL.  

Station RMSEOL RMSEDA NSEOL NSEDA BIASOL BIASDA KGEOL KGEDA NIC 

Huntsville-1 0.8727 3.4169 0.9979 0.9974 0.0220 0.0164 0.9464 0.9698 -0.24 

Huntsville-2 3.4188 24.4122 0.9970 0.9953 0.1176 0.1288 0.9503 0.9746 -0.09 

Croton-1 0.24 0.24 0.99 0.99 12.93 12.93 0.97 0.97 0 

Croton-2 0.59 0.59 0.99 0.99 27.13 27.13 0.96 0.96 0 

Croton-3 0.88 0.88 0.99 0.99 42.93 42.93 0.96 0.96 0 

 

It is observed that the discharge performance is not improved when soil moisture 

is assimilated. This complements on the previous studies, as discussed in the 

introduction, with SAC-SMA and other land surface models.  

 

3.7.2 Univariate streamflow assimilation 

In this scenario, synthetic streamflow observations at USGS gauges are 

assimilated into the WRF-Hydro model using a univariate EnKF algorithm. The effects 

of DA on both soil moisture and streamflow are assessed. In the Huntsville area, 

observations at two USGS gauges are assimilated. For the Croton domain, observations at 

three USGS locations are assimilated. The resulting streamflow from OL and DA runs 
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are recorded and compared against the true streamflow. The performance measures are 

presented in Table 3-4.   

Table 3-4: Univariate synthetic streamflow assimilation results. The performances of OL 

and DA in simulating streamflow are measured by RMSE, BIAS, KGE, and NSE. The 

first three rows indicate the measures for the Croton domain and the lower two rows 

show the measures for the Huntsville area. The last column shows NIC, the improvement 

made by DA over OL. 

 RMSEOL RMSEDA BIASOL BIASDA KGEOL KGEDA NSEOL NSEDA NIC 

Croton-1 0.24 0.15 12.93 9.67 0.97 0.98 0.99 0.99 0.35 

Croton-2 0.59 0.25 27.13 14.05 0.96 0.98 0.99 0.99 0.56 

Croton-3 0.88 0.43 42.93 24.76 0.96 0.98 0.99 0.99 0.51 

Huntsvill-1 0.40 0.38 0.02 0.01 0.94 0.97 0.99 0.99 0.05 

Huntsville-2 2.11 0.88 0.11 0.04 0.95 0.98 0.99 0.99 0.58 

 

It is noted that the DA is significant in improving streamflow simulations as 

indicated by NIC (in the last column of Table 3-4). All NIC values are positive. This 

indicates that the DA outperforms the OL. The lowest degree of improvement is observed 

in the internal gauge of the Huntsville domain. The highest degree of improvement is 

observed at the outlet of the Huntsville area. In the Croton domain, the upper gauge has 

the lowest improvements (similar to the upper gauge in the Huntsville). The highest 

improvements (56%) are observed at the middle gauge of the domain. The outlet is 

expected to have the highest degree of improvements. The lower performance at the 

outlet than the middle gauge in the Croton area is attributed to the lake just upstream of 

the outlet and downstream of the middle gauge.  
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3.7.2.2 Effect of univariate streamflow assimilation on soil moisture 

The influence of streamflow DA on soil moisture is assessed in this section. 

Observed streamflow is assimilated into the WRF-Hydro model at USGS gauge 

locations. In the assimilation process, soil moisture is also recorded. The resulting soil 

moisture is then compared with the true soil moisture and the performance measures are 

calculated accordingly. Spatially-averaged performance measures (RMSE, NSE, KGE, 

and BIAS) are shown in bar plots in Figure 3-17. The upper left plot compares RMSE. It 

is observed that the RMSE of DA is lower than the RMSE of OL. Similar results are 

observed for NSE, KGE, and BIAS. In all the plots, the outperformance of DA over OL 

is confirmed. A similar analysis is presented for the Croton, NY area in Figure 3-18. 
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Figure 3-17: Univariate synthetic streamflow assimilation results. The effect of 

streamflow assimilation on soil moisture is evaluated. RMSE (upper left panel), NSE 

(upper right panel), KGE (lower left panel), and BIAS (lower right panel) are plotted for 

OL and DA. The bars show the spatially averaged. The study area is Huntsville, AL.  
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Figure 3-18: Univariate synthetic streamflow assimilation results. Same as Figure 3-17 

but for the Croton, NY area. 

 

A more detailed comparison is presented in Figure 3-19. Scatter plots are used. 

Points indicate domain grid cells. The lower left panel of this figure compares the BIAS 

in OL and DA. The gray line indicates the 1:1 line. If a point falls on this line, it means 

that the OL and DA have equal performance. If it falls above the line, it means that the 

BIAS in OL is higher than the BIAS in DA which indicates the outperformance of DA 

over OL. If a point falls below this line, it means that the OL outperforms the DA. It is 

noted that all points in this plot are above the 1:1 line; indicating the outperformance of 

DA over OL. This result is confirmed by other scatter plots of the figure. RMSE of DA in 
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all points is lower than the RMSE of OL. The DA NSEs of all points are higher than OL 

NSEs. Similarly, the DA KGEs of all points are higher than the OL KGE.  

 

Figure 3-19: Univariate synthetic streamflow assimilation results. The effect of 

streamflow assimilation on soil moisture is evaluated. RMSE (upper left panel), NSE 

(upper right panel), KGE (lower left panel), and BIAS (lower right panel) are plotted for 

OL and DA. Points represent grid cells in the area. The gray line is the 1:1 line that 

indicates the equal performance of OL and DA. The study area is Huntsville, AL.   
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Finally, the degree of outperformance of DA over OL is directly measured by 

NIC. Positive values of NIC show that DA performs better than OL. Higher values of 

NIC indicated higher improvements. Negative values, on the other hand, indicate 

degradation by DA over OL. The spatial variation on NIC in the Huntsville area is 

mapped in Figure 3-20, the upper panel. It is observed that the NIC values are positive for 

all grid cells. The histogram of the NICs shown in the lower panel of the figure indicates 

that the improvements are as high as 40%. For the majority of the cells, the 

improvements are less than 10%.   

Comparing these results with the results of the previous scenario indicates that the 

improvements here are lower. This means that higher improvements in soil moisture are 

achieved in the univariate soil moisture DA. Therefore, while both DAs are capable of 

improving soil moisture, direct assimilation of soil moisture is suggested. However, in 

cases where both soil moisture and streamflow improvements are of interest, multivariate 

EnKF is used, as shown in the next section. 
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Figure 3-20: Univariate synthetic streamflow assimilation results. Improvements of DA 

over OL in soil moisture simulations in the scenario that univariate streamflow is 

assimilated at USGS gauges. The study area is Huntsville, AL. The spatial variation of 

NIC is mapped in the upper panel and the histogram of grid cell NICs is plotted in the 

bottom. 
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3.7.3 Multivariate assimilation of soil moisture and streamflow 

In this section, the results of assimilating both soil moisture and streamflow using 

a multivariate EnKF are explained. Synthetic streamflow is assimilated at USGS gauges 

and synthetic soil moisture is assimilated in every grid cell over the LSM terrain with a 

resolution of 1 (km) in WRF-Hydro. The effects of assimilation on soil moisture are 

discussed first followed by the effects on streamflow.  

3.7.3.3 Effect of multivariate streamflow/soil moisture assimilation on soil moisture 

Soil moisture simulations were compared with the true soil moisture and the 

performance measures were computed. The spatially averaged performance measures for 

OL and DA are presented in Figure 3-21. In the RMSE and BIAS charts, the DA is lower 

and in the NSE and KGE charts, the OL is higher. All four plots indicate the 

outperformance of DA over OL.  
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Figure 3-21: Multivariate synthetic streamflow and soil moisture assimilation results. OL 

and DA performance measures for soil moisture simulations in Huntsville, AL.  

 

The spatial distributions of these measures are shown in Figure 3-22. Maps are 

provided for RMSE, NSE, KGE, and BIAS in this figure.  The left column shows the OL 

results and the right column shows the DA results. From BIAS and RMSE, it is observed 

that OL has a high error in the western part of the domain which is the urban Huntsville 

area. DA shows lower biases in these areas. Similar results are confirmed by the NSE and 

KGE maps. 
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Figure 3-22: Multivariate synthetic streamflow and soil moisture assimilation results. 

Spatial distributions of RMSE, NSE, BIAS, and KGE measures are provided in row 1, 2, 

3, and 4, respectively. The left column shows OL and the right column shows the DA. 

The study area is Huntsville, AL. 
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Cell-wise comparisons are presented in Figure 3-23. Scatter plots are provided to 

compare OL and DA RMSE, NSE, KGE, and BIAS. Dots in these plots indicate the grid 

cells in the domain. The gray lines are 1:1 lines. Points that fall on this line indicate a 

similar performance of OL and DA. In RMSE and NSE the points that fall above this line 

show a better performance of DA and in NSE and KGE, the points that are below the line 

show a better performance of DA.  In all of the figures, the distributions of the dots show 

the outperformance of DA over OL which confirms the results of the previous figures.  

Finally, the improvements made by DA over OL are quantified by NIC, as 

discussed in the methodology section. Positive values of NIC indicate the outperformance 

of the DA. Higher values indicate better performances. The spatial distribution of NIC is 

shown in Figure 3-24, the upper panel. It is observed that in the urban area, the 

outperformance is lower (about 12%). In the main watershed, the outperformance 

increases to more than 20%. The histogram of the NICs is shown in the second panel of 

this figure. It is noted that in the majority of cells, the NIC is between 0 to 10%. The 

improvements are as high as 50%.   
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Figure 3-23: Multivariate synthetic streamflow and soil moisture assimilation results. 

Cell-wise comparisons of OL and DA performance in Huntsville, AL. Dots represent 

cells in the domain. The gray line is the 1:1 line. 
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Figure 3-24: Multivariate synthetic streamflow and soil moisture assimilation results. The 

degree of improvement of DA over OL for soil moisture simulations as indicated by NIC 

for Huntsville, AL. The spatial distribution of the improvements is shown on the upper 

panel. The histogram of the values is shown in the lower panel. 
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Next, similar results are provided for the Croton, NY area. The NICs are mapped 

in Figure 3-25. NIC is positive in 71% of the cells and it is negative in 29% of the area. 

The improvements are as high as 15%. The spatially averaged performance measures are 

also shown in Table 3-5. KGE and NSE are not different in OL and DA while RMSE and 

BIAS indicate a marginally lower error in DA. 

Table 3-5: Multivariate synthetic streamflow and soil moisture assimilation results. 

Comparison of spatially-averaged performance of OL and DA in simulating soil moisture 

in Croton, NY is performed.  

 RMSE NSE BIAS KGE 

OL 0.07 0.99 6.71 0.99 

DA 0.06 0.99 6.59 0.99 

 

 

Figure 3-25: Multivariate synthetic streamflow and soil moisture assimilation results. The 

spatial distribution of NIC as an indication of improvements by DA over OL in 

simulating soil moisture is mapped. The white cells indicate the water bodies.  
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3.7.3.4 Effect of univariate streamflow assimilation on streamflow 

The effects of dual soil moisture and streamflow assimilation on streamflow are 

presented in the following. Table 3-6 shows the performance measures in both areas at 

USGS gauge locations.  It is noted that streamflow in all the USGS gauges is improved 

by DA. These improvements are as high as 49% in the middle gauge of the Croton area. 

For the Huntsville area, the improvements are as high as 58% at the outlet. The upstream 

gage is not improved significantly by the DA.   

Table 3-6: Multivariate synthetic streamflow and soil moisture assimilation results. 

Comparison of performance measures of OL and DA in simulating streamflow in all 

gages in both watersheds. A better performance is shown in bold.  

 RMSEOL RMSEDA BIASOL BIASDA KGEOL KGEDA NSEOL NSEDA NIC 

Croton-1 0.24 0.12 12.93 8.42 0.97 0.99 0.99 0.99 0.48 

Croton-2 0.59 0.30 27.13 16.12 0.96 0.98 0.99 0.99 0.49 

Croton-3 0.88 0.57 42.93 30.21 0.96 0.98 0.99 .99 0.34 

Huntsvill-1 0.40 0.38 0.02 0.01 0.95 0.98 0.99 0.99 0.05 

Huntsville-2 2.11 0.88 0.11 0.04 0.94 0.97 0.99 0.99 0.58 

 

3.7.4 Summary of the performance measures 

A summary of the performance measures is provided in Table 3-7. It is noted that 

highest soil moisture improvements are achieved when a univariate EnKF is used to 

assimilate soil moisture into the WRF-Hydro model. Next high improvements in soil 

moisture are achieved by dual assimilation of soil moisture and streamflow.  Finally, 

when discharge is assimilated using a univariate EnKF, soil moisture improvements are 

observed; however, the improvements are not as high as other scenarios.  
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The highest degree of improvements is achieved by direct univariate assimilation 

of streamflow. Dual assimilation results in improved streamflow, too (with lower 

improvements, though). However, streamflow simulations are not improved in the case of 

univariate soil moisture assimilation. 

Table 3-7: Summary of performance measures in all scenarios. NI indicates no 

improvement, P25, µ, and P75 indicate the 25
th

, average, and the 75
th

 spatial percentile. 

The first column from left is associated with the scenario of univariate assimilation of soil 

moisture. The middle column results are related to the univariate assimilation of 

streamflow, and the third column (on the right) indicates the result of multivariate 

assimilation of both soil moisture and streamflow. Numbers are in percent. 

  Soil Moisture Discharge Soil moisture and discharge 

H
u

n
ts

v
il

le
 

SM 
P25 µ P75 P25 µ P75 P25 µ P75 

11.56 16.14 25.42 2 6 9 11.54 16.05 25.15 

Q-

upstre

am 

NI 5.06 5.25 

Q-

outlet 
NI 58.19 58.0 

C
ro

to
n

 

SM 
P25 µ P75 P25 µ P75 P25 µ P75 

2 3 6 NI 0 1.57 3.86 

Q-

upstre

am 

NI 35 48 

Q-

middl

e 

NI 56 49 

Q-

outlet 
NI 51% 34% 

 

The results indicate the added value of multivariate data assimilation. This DA 

leads to improved soil moisture and streamflow. The next scenario that improves both 

variables is streamflow assimilation. Even though the soil moisture improvements in this 

scenario are not as high, it is recommended as no degradation is observed. Soil moisture 
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assimilation is recommended in cases where the focus is on soil moisture. If streamflow 

is not of interest, this scenario is recommended.  

3.8 Real study 

To be consistent with the current implementation of the National Water Model, 

for the real case study, streamflow is assimilated. Streamflow with an assumed 

coefficient of variation of 15% is assimilated into the WRF-Hydro using EnKF and the 

model states and outputs are updated. This has been done for three gauges in the Croton 

area and at the outlet of the Huntsville area. The streamflow observations are acquired 

from the USGS observations. Results indicate that DA is capable of improving flow 

simulations up to 80%. As shown in Table 3-8, the highest improvements are observed in 

the outlet of the Huntsville area followed by the middle gauge of Croton, NY. The lower 

performance improvement in the middle gauge compared to the outlet is attributed to the 

lake that is just upstream of the outlet. Other performance measures including BIAS, 

RMSE, NSE, and KGE are shown in Figure 3-26 and Figure 3-27. Figure 3-28 compares 

flow simulations with regards to observations. In all gauges, the intensified performance 

of the DA is an indication of its effectiveness. 

Table 3-8: OL and DA root mean square errors and the degree of improvements by DA 

for the real case study. 

 RMSEOL RMSEDA NIC 

Croton, NY-Gage1 5.807 1.936 0.666 

Croton, NY-Gage2 11.867 2.464 0.792 

Croton, NY-Gage3 21.299 5.320 0.750 

Huntsville, AL 52.332 8.435 0.838 
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Figure 3-26: Streamflow performance measures of the OL and DA. The blue bars 

indicate OL and the orange bars indicate DA. KGE and NSE are dimensionless and 

RMSE is in m
3
/s 

 

Figure 3-27: BIAS (in m
3
/s) in the studied gauges. The DA technique is a univariate 

EnKF to assimilate streamflow observations. 
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Figure 3-28: Comparison of OL, DA and observed streamflow in (1) Huntsville outlet, 

(2) upstream gauge of Croton, (3) middle gauge of Croton, and (4) outlet gauge in 

Croton. 
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3.9 Conclusion and discussion 

With an overarching goal of improved flood modeling skill, this study focused on 

two critical variables in the hydrologic cycle including soil moisture and streamflow. The 

added value of ensemble data assimilation into the community WRF-Hydro model was 

assessed in three steps:  

First, univariate Ensemble Kalman Filter was employed to assimilate satellite soil 

moisture observations in WRF-Hydro. This assimilation resulted in improved soil 

moisture simulation and demonstrated successful data assimilation into the model. The 

employed errors and the parallel computing methodology could be used for any future 

data assimilation study. Moreover, the effects of this assimilation on streamflow were 

investigated. It was observed that improvements in outlet streamflow were limited. This 

implies the inability of the model in propagating soil moisture assimilation information to 

streamflow. Similar results were reported by studies on less complex land surface 

models, which indicates that even with such a complex model as WRF-Hydro, it is hard 

to update other variables. 

Next, univariate Ensemble Kalman Filter was employed to assimilate USGS 

streamflow observations in WRF-Hydro. Significant improvements were observed in 

streamflow simulations; however, no significant improvement in soil moisture 

simulations was observed.  

Finally, multivariate Ensemble Kalman Filter was employed for simultaneously 

assimilating soil moisture over the area and streamflow at the outlet. Significant 
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improvements in both soil moisture and streamflow simulations were observed. The 

highest degree of improvements (20% to 80%) was observed in non-urban areas of the 

study area while the improvements decreased in urban areas (~10%). This could be an 

indication of model inadequacy in urbanized watersheds. Moreover, the most significant 

improvements were observed around the peak of the flood and the least significant 

improvements were at low-flows.  

Therefore, the main findings of this study are as the following. 

The choice of the variable to be assimilated in ensemble data assimilation depends 

on the goal of the assimilation. If an atmospheric scientist, for example, aims at coupling 

WRF-Hydro with WRF and cares about the outputted atmospheric variables, univariate 

assimilation of soil moisture is adequate and there is no need for assimilation of 

streamflow. However if a hydrologist, for example, seeks improved flood forecasting at 

the outlet of a watershed, assimilating streamflow using univariate ensemble data 

assimilation is suggested. Finally, the author suggests that operational agencies such as 

the NWC, that need to improve both soil moisture and streamflow, consider dual 

assimilation of soil moisture and streamflow using a multivariate ensemble data 

assimilation technique. The employed parallel algorithm explained in the previous 

chapter can be used for an efficient implementation of such data assimilation with less 

computational demand.  

It is acknowledged that running ensemble data assimilation continuously at a 

large scale such as the Continental United States could result in delay in delivering the 
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forecasts or a too high computational demand, and a framework with less frequent 

assimilation might be more favorable. In this case, the author suggests using ensemble 

data assimilation only in cases that a flood is expected. The fact that the ensemble data 

assimilation had the most significant improvements around the peak of the flood supports 

this suggestion. A reasonable strategy would be starting the Ensemble Kalman Filter DA 

(with initial conditions from the nudging algorithm) once the streamflow magnitude 

passes a certain percentile of the climatology (75%, for example). This way, the 

computational burden of ensemble data assimilation is not imposed all the time and at the 

same time, the forecasts benefit from the advantages that ensemble data assimilation 

offers, those that the nudging algorithm does not have.    

A future extension of this study may conduct the same analysis for various 

seasons. There is a high possibility that in some seasons, DA is more crucial than other 

seasons or the variable of interest may vary depending on the season. This can save 

significant computational power and time in an operational setting. 

Similar to the referred studies, this work does not consider the time lag between 

the updated soil moisture information and streamflow in the outlet. This is also 

highlighted by Clark et al. (2008) and a future extension of this paper can investigate a 

suitable time lag with regard to the time of concentration of the watershed. The second 

chapter of this dissertation focused on the core column LSM in the NWM; the Noah-MP 

model, This chapter expanded on the previous chapter by studying the WRF-Hydro 

model which adds  routing components to Noah-MP, and unlike Noah-MP that does not 
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transfer information from one cell to another and ignores the lateral movement of water, 

WRF-Hydro accounts for the lateral movements too. This chapter will be followed by a 

study where the NWM and uncertainties in flood forecasting are investigated. In the next 

chapter, the potential improvements that DA and satellite remote sensing can have on 

flood forecasting will be assessed. 

.  
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4 Improved National Water Model forecasts based on Ensemble data 

assimilation 

 

4.1 Abstract 

Quantification of uncertainty in flood forecasting systems is studied in the current 

chapter. A frequently studied source of uncertainty in flood forecasting systems comes 

from the atmospheric forcing inputs. This study moves toward full uncertainty 

quantification by simultaneously accounting for both atmospheric forcings and initial 

condition uncertainties. Initial condition uncertainty is quantified by ensemble data 

assimilation where a hydrologic model is run up to the forecast initial date with the 

assimilation of USGS streamflow observations. Ultimately, the updated model states in 

the forecast date are considered to represent the initial condition uncertainty. The benefits 

of initial condition uncertainty quantification are underscored in this study. The results 

show improvements up to 80%. Improvements in short-, medium-, and long-range 

forecasts are evaluated and it is observed that short-range forecasts are significantly 

sensitive to initial conditions. It is observed that the effects of an updated initial condition 

last for two days. After that, the system forgets about the initial condition and 

atmospheric forcings become dominant. The results of this study highlight the importance 

of initial condition uncertainty and encourage more attention to this source of uncertainty. 

Besides, this work can help operational flood forecasting agencies such as the National 
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Water Center to improve flood forecasts. Uncertainty quantification and ensemble runs 

are particularly suggested. 

4.2 Introduction 

A reservoir manager has to decide whether to release water or not. Such decision 

is based on upstream soil moisture condition and snowpack, precipitation forecast, and 

anticipated streamflow. The manager needs to evaluate the trade-off between alternatives 

including releasing water before a storm begins to avoid overtopping or retaining water 

for customers in downstream. In the former case, if the precipitation is less than expected, 

the water is lost and in the latter case, if the precipitation is more than expected, the 

reservoir can be topped which is followed by catastrophic flooding in the downstream 

(Schaake et al., 2007). Remarkable uncertainties are inherent in similar examples mainly 

because weather forecasts are imperfect. A natural approach to tackle these myriad 

uncertainties is probabilistic weather forecasts in the form of an ensemble of possible 

weather conditions. The manager in the above example can benefit from a probabilistic 

forecast by weighing the costs of reduced storage from a dam release against the 

probability of flooding and hazards in case of not releasing water (Schaake et al., 2007).  

Rather than single deterministic forecasts, the flood forecasting community (in 

both operation and research) is moving towards forcing hydrological models with 

multiple weather forecasts for the same location and time in the form of an ensemble. The 

forecasts come from numerical weather prediction (NWP) models. Such system is also 

known as Ensemble Prediction System (EPS) (Cloke and Pappenberger, 2009). NWPs 
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are the results of sophisticated computer runs on supercomputers to solve numerical 

atmospheric equations and predict variables such as rainfall, temperature, pressure, and 

wind speed and are well known for forecasting day-to-day changes of weather states 

(Bowler et al., 2008; Shutts, 2005; Wei et al., 2006). An ensemble of NWPs accounts for 

the uncertainties associated with the atmosphere resulting from the inability to determine 

the exact state of the system due to its non-linearity and complexity, spatiotemporal 

resolution of the simulations, etc. The North American Multi-Model Ensemble (NMME) 

(Khajehei et al., 2018; Kirtman et al., 2014) that uses an ensemble of NWPs is a recent 

example.   

Currently, several flood-forecasting centers are considering the adoption of NWP-

EPS and many others are already using it. For example, NOAA Advanced Hydrological 

Prediction Services (AHPS) uses National Weather Services (NWS) weather predictions 

for their EPS. Similarly, European forecast centers such as Finnish Hydrological 

Services, Royal Meteorological Institute of Belgium (Roulin and Vannitsem, 2005; 

Roulin, 2006), and Swedish Hydro-Meteorological Services (Johnell et al., 2007) use 

European Center for Medium-Range Weather Forecasts (ECMWF) data as their NWP 

input. Moreover, several international bodies support the use of ensemble prediction 

systems such as Hydrologic Ensemble Prediction Experiment (HEPEX) (Schaake et al., 

2007), an open participatory project with the goal of bringing scientists with different 

backgrounds together and improving hydrologic forecast techniques through 

interdisciplinary collaborations. Other examples include the International Commission 
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for the Hydrology of the Rhine Basin (CHR), World Meteorological Organization 

(WMO), and the International Commission for the Protection of the Danube River 

(ICPDR). 

Numerous studies have focused their attention on enhancing flood forecasting 

skill by improving weather forecasts. Often, they assume that increasing the spatial 

resolution of weather simulations removes some of the large errors; however, the 

improvement in the forecast skill is restricted by computing power and storage limits. As 

a compromise, clustering ensemble members is proposed (Cloke and Pappenberger, 

2009; Thirel et al., 2008) where depending on the purpose of the EPS, some ensemble 

members are prioritized (Molteni et al., 2001; Verbunt et al., 2007). Another attempt to 

improve the weather forecasts includes building an ensemble of predictions from 

different forecast centers and forming a grand ensemble by combining different 

ensembles (Park et al., 2008). 

While the meteorologists explore the opportunities of upgrading the weather 

forecasts, hydrologists are after advancing the flood forecasting systems by, for instance, 

downscaling NWPs, and correcting for bias or dispersion. Main challenges for hydrologic 

modeling are (1) identifying the sources of uncertainty, (2) identifying the implications of 

an imperfect hydrologic model, and (3) addressing all sources of uncertainty in the final 

hydrologic ensemble prediction (Schaake et al., 2006). In most cases, errors in 

meteorological forcings are considered as the greatest source of uncertainty in the flood 

forecasting procedure (Cloke and Pappenberger, 2009). Such errors cascade through the 
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model and thus produce uncertain flood forecasts; however, there is no mutual agreement 

on the sensitivity of flood forecasts on the input uncertainty, and the results vary case by 

case. For example, some studies conclude that uncertainty in precipitation is amplified 

through the flood forecasting system (Komma et al., 2007) while others conclude that it is 

neither amplified nor dampened (Cloke and Pappenberger, 2009; Olsson and Lindstrom, 

2008). Cloke and Pappenberger (2009) demonstrated that input uncertainty could be 

augmented or shrunk (or neither) depending on the watershed characteristics such as the 

size, resolution of forcing data, and the dominant surface runoff process. In addition, they 

highlight that a watershed’s sensitivity to meteorological forcings is not static and it 

changes in space and time. Such investigations have been discussed frequently in the 

literature (Dodov and Foufoula-Georgiou, 2005; Smith et al., 2004; Woods and 

Sivapalan, 1999). Other sources of uncertainty, however, need more attention. These 

uncertainty sources include but are not limited to the initial condition, imperfect 

hydrologic models, and parameterization.  

Full uncertainty quantification requires representing all sources of uncertainty. A 

notable source of uncertainty that is often ignored is initial condition uncertainty. Initial 

conditions provide the foundation for the hydrologic processes within the hydrologic 

model and erroneous initiation of the model results in a deviation from the true states. A 

study by Wood and Lettenmaier (2008) underscores the importance of quantifying initial 

condition uncertainties. They assess the importance of initial condition versus boundary 

forcing uncertainties and conclude that depending on space and season, one could be 
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more critical than the other. They also highlight that the currently used flood forecasting 

methods lack a mechanism for representing initial condition errors. Moreover, it is shown 

that more accurate uncertainty quantification in initial condition leads to more reliable 

hydrologic forecasts. For example, DeChant and Moradkhani (2011) aimed at 

investigating the effects of quantifying initial condition uncertainty in the SAC-SMA 

(Sacramento Soil Moisture Accounting) hydrologic model. They quantified the input data 

uncertainty by creating an ensemble of meteorological forcings resampled from historical 

series, which is called Ensemble Streamflow Prediction (ESP) (Twedt et al., 1977). In 

addition, they quantified the initial condition uncertainty via data assimilation (DA) 

methods and concluded that quantification of initial condition uncertainty improved the 

ESP’s seasonal flood forecasting skill. Similarly, Yan et al. (2017) reported improved 

drought forecasting skill after they used DA to quantify the initial condition uncertainty.  

Data assimilation methods have proved beneficial in the estimation of the Earth 

system states. Being defined as (Liu and Gupta, 2007) “procedures that aim to produce 

physically consistent representations or estimates of the dynamical behavior of a system 

by merging the information present in imperfect models and uncertain data in an optimal 

way to achieve uncertainty quantification and reduction”, data assimilation methods have 

been occasionally employed to update a hydrologic variable which is then used to 

initialize a flood/drought prediction framework. For example, Dechant and Moradkhani 

(2011) used ensemble data assimilation to assimilate SNOTEL data into the SNOW-17 

model and improve the estimation of snow quantities. They subsequently use the updated 
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snow quantities to initialize ESP flood forecasting method. Similarly, Yan et al. (2017) 

assimilate satellite data to update root zone soil moisture.  

This chapter aims at enhancing the flood forecasting skill by advancing toward 

full uncertainty quantification. Short-, medium-, and long-term forecast skills are 

investigated with and without uncertainty quantification. Uncertainty quantification 

occurs by simultaneously accounting for the initial condition as well as weather forecast 

uncertainties. Initial condition uncertainty is explained by the updated model initial 

condition, and forcings uncertainty is explained through an ensemble. Updated initial 

conditions are adopted from a separate data assimilation run up to the forecast date. In 

this DA run, USGS streamflow observation (at the outlet) is assimilated to the hydrologic 

model. The sensitivity of forecasting skill to initial condition uncertainty is assessed by 

comparing short-, medium-, and long-term responses. 

Therefore, the overarching objectives of this chapter are as the following: 

(1) Assessing the sensitivity of flood forecasts to initial conditions. Answering the 

question of “how long does it take for a land surface model to forget about an 

updated/improved initial condition?” is of particular interest in this chapter. 

(2) Evaluating the added value of quantification of initial condition uncertainty in 

flood forecasting.  

The results of this chapter will help improve the current flood forecasting 

approaches. Currently, quantification of uncertainty in atmospheric forcing inputs are 
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considered and this chapter may aid in attracting more attention to other sources of 

uncertainty such as the initial condition.  

Particularly, operational agencies such as the National Water Center can benefit 

from this research. This study can be the start of discussions on probabilistic flood 

forecasting and uncertainty quantification in their model, the National Water Model.    

4.3 Study area and data 

In this chapter, the studied area is Huntsville, AL. For more information about this 

study area and data, readers are referred to the previous chapter. 

Similar to the previous chapters, the NLDAS-2 data are used for atmospheric 

forcings.  

4.4 Methodology 

4.4.1 National Water Model 

The National Water Model (NWM) is a mathematical representation of the water 

cycle that simulates complex processes such as rainfall, infiltration, evapotranspiration, 

etc. and builds upon the current operational river forecasting routine by increasing the 

spatial and temporal resolution as well as increasing the river forecasting locations from 

4,000 to 2,700,000. As depicted in Figure 4-1, the NWM outputs fall into four categories 

including analysis and assimilation, short-term forecasts, medium-term forecasts, and 

long-term forecasts. Short-term forecasts are issued hourly, medium-range forecasts are 

issued four times a day, and long-term forecasts are issued daily for the next 30 days. 
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Ultimate variables include streamflow at 2,700,000 points and other hydrologic variables 

such as soil moisture and runoff over a 1km×1km and 250m×250m grid. The following 

figure provides a detailed description of the NWM outputs and frequencies. 

 

Figure 4-1: Four configurations of the NWM, the data used, and the associated 

frequencies (adopted from the NWM website at http://water.noaa.gov/about/nwm)  

 

The NWM is a specific configuration of the community WRF-Hydro Land 

Surface Model (LSM) which has recently been introduced to the hydrologic community. 

The WRF-Hydro model, itself, uses another newly-developed column LSM called Noah-

MP as the core hydrologic model. In WRF-Hydro, Noah-MP results (such as soil 

moisture and runoff) are passed to routing modules. Riverine water level and discharge, 
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among other variables, are outputted by WRF-Hydro. Figure 4-2 depicts a schematic of 

this process. 

 

Figure 4-2: A Schematic of the NWM modules and procedures. 

 

4.4.2 Data assimilation 

In this chapter, similar to the previous chapter, Ensemble Kalman Filter is used. 

For more information about the formulation and the background of this method, readers 

are referred to section 2.6.1.2.  
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4.4.3 High-Performance Computing 

The high-performance algorithm for this chapter is similar to the steps explained 

in section 2.6.2. Readers are referred to this section for more information. 

4.4.4 Performance measures 

NIC and RMSE are used for assessing the performance in this chapter. Please see 

section 2.6.3 for details of calculating NIC.   

4.5 Results 

4.5.1 Synthetic study 

To evaluate the forecast performance, a synthetic study that was mentioned in the 

previous chapters was designed. In the synthetic study, the model was run forward and 

the simulated streamflow was considered truth. For more information on building the 

synthetic experiment, please see section 2.8.2. OL and DA were run for 1/1/2018 to 

2/10/2018 at an hourly time step and initiated the forecasts on 2/10/2018 based on their 

states. Two ensembles of model forecasts were initiated. In both ensembles, the forcing 

inputs were perturbed as described in the methodology section. Next, short-range, 

medium-range, and long-range forecast skills are assessed. 
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4.5.1.1 Short-range forecasts  

Forecasts are initialized on 2/10/2018 for the next 18 hours (similar to the NWM) 

and the results show that the DA improves the forecasts at the outlet by approximately 

54% and in the internal gauge by about 50% as shown in Figure 4-3. Other measures 

such as RMSE, NSE, BIAS, and KGE are shown in Figure 4-4 and Figure 4-5.  

 

Figure 4-3: Improvements (as indicated by NIC) by DA as compared to the OL for short-

term streamflow forecasts in Huntsville, AL.  
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Figure 4-4: Performance measures of the OL and DA short-range predictions at the outlet 

of the Huntsville, AL area. Forecasts are initialized on 2/10/2018. 



134 

 

 

Figure 4-5: Same as Figure 4-4 but for the internal gauge of the same area (short-term 

forecasts initialized on 2/10/2018. 

 

4.5.1.2 Medium-range forecasts  

For testing the effectiveness of medium-range forecasts, the model was initiated 

on 2/10/2018 and the results were saved for the next 10 days. Comparison of OL and DA 

results is presented in the following figures. It was observed that the improvements 

decreased as compared to the short-range forecasts. The improvements of DA over OL at 

the internal gauge and at the outlet decreased to about 4% and 12%, respectively. 
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Figure 4-6 compares the improvements and Figure 4-7 compares other performance 

measures.  

 

Figure 4-6: Medium-range forecast performance of DA as compared to OL indicated by 

NIC for the Huntsville, AL area.  
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Figure 4-7: Performance measures of OL and DA for medium-range forecasts in 

Huntsville, AL. 

 

4.5.1.3 Long-range forecasts 

Similarly, long-range forecast performance was assessed and it was observed that 

the DA improved OL performance by 10% at the outlet and by 2% at the internal gauge. 

This means that as the lead-time increases, the performance decreases and that generally, 

the DA made higher improvements at the outlet than the internal gauge. A performance 

comparison of OL and DA and the associated NICs are shown in Figure 4-8.  
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Figure 4-8: Degree of improvements by DA over OL at the outlet and the internal gauges 

for long-range forecasts in Huntsville, AL area.  

  

4.5.2 Real study 

Subsequent to the synthetic study, an analysis was performed using the real USGS 

gauge observations. OL and DA were run for the period of 1/1/2018 to 2/5/2018 at an 

hourly time step. Then, the states on 2/5/2018 were saved. Next, the model was initialized 

with the updated initial states for 2/5/2018 to 2/28/2018. Figure 4-9 shows the variation 

of the performance with lead-time. As the lead-time increases, the forecast skill decreases 

which agrees with previous research by Yan et al. (2017). Similarly, in Figure 4-10, the 
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performance of short-, medium-, and long-range forecasts as defined by the NWM are 

demonstrated. Short-term (18 hours) predictions are improved by about 35% while 

medium (10 days) range and long range (1 month) forecasts are improved by around 

10%. It is observed that ensemble data assimilation is capable of improving the forecasts 

by up to 90% for the next hour. The degree of improvement is dependent on the time of 

initialization and the location of the gauge. In general, more improvements were observed 

at the outlet than the internal gauge. The time series of the forward run, the OL, and the 

DA are presented in Figure 4-11. 

 

Figure 4-9: Variation of improvements by DA as opposed to OL with lead-time. 

Forecasts are initiated on 2/5/2018 before the flood peak at the rising limb of the 

hydrograph 
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Figure 4-10: DA improvements in short-, medium-, and long-range forecasts. Forecasts 

are initiated on 2/5/2018 before the flood starts. The lead times are defined in a similar 

way as the NWM.  
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Figure 4-11: Time series of forecasted streamflow in OL and DA initial condition. DA 

Forecast (the red line) is initiated on 2/5/2018. The blue line indicates the OL forecasts 

and the black line indicates the observation. 

 

4.6 Conclusion and discussion 

Avoiding flood-induced economic damages demands an early and effective flood 

warning system. Such a system is affected by uncertainties from different sources 

including forcing data (weather forecasts), initial land surface condition, model 

representation (structural uncertainty), and model parameters. In this chapter, 

uncertainties associated with the atmospheric forcings are characterized by using an 

ensemble of possible conditions, instead of a single deterministic forecast. While other 
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sources of uncertainty (mainly from the initial condition) are acknowledged in the 

literature, a full quantification of uncertainties including both initial condition and 

meteorological forcings needs more attention. This study moves toward a more complete 

characterization of uncertainty by simultaneously accounting for both atmospheric 

forcings and initial condition uncertainties. Initial condition uncertainty is quantified by 

ensemble data assimilation where a hydrologic model is run up to the forecast initial date 

with the assimilation of USGS streamflow observations. Ultimately, the updated model 

states in the forecast date are considered to represent the initial condition uncertainty. 

Regarding the atmospheric forcings uncertainty, an ensemble is utilized. The added value 

of initial condition uncertainty quantification was demonstrated in this study. It was 

observed that quantification of initial condition uncertainty in addition to quantification 

of meteorological forcing inputs is able to improve the forecasts from a forward model 

run. Improvements in short-, medium-, and long-range forecasts were assessed and it was 

observed that updated initial condition uncertainty affects the short-range forecasts the 

most. Medium- and long-range forecasts were not much affected by the initial conditions. 

Therefore, the main findings of this chapter are as follows: 

(1) Short-range forecasts are significantly sensitive to initial conditions. Medium 

and long-range forecasts are not sensitive to initial conditions. 

(2) The effects of an updated initial condition last for two days. After that, the 

system forgets the initial condition and atmospheric forcings become dominant. 
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These findings highlight the importance of initial condition uncertainty for flood 

forecasting. The results of this chapter suggest more research is necessary on the value of 

initial condition uncertainty. This chapter can also start a discussion in the National 

Water Center on the values of uncertainty quantification for operational flood forecasting 

(the current forecasts are deterministic and uncertainty is not quantified).    

The author’s initial investigations on the forecasts quality show that 

improvements in the forecasts are significantly sensitive to the time of initializing the 

forecast. In this chapter, the forecasts are initialized at the rising limb of the peak. The 

results might vary if the model was initialized at the time of the peak or at the falling 

limb. Future extensions of this study may consider initializing the forecasts in different 

parts of the hydrograph and quantifying the sensitivity of forecasts at the time of the 

initiation.  

Additionally, in the DA run before initializing the forecasts, only streamflow 

observations are assimilated in the model. Future extensions of this work may consider 

assimilation of satellite observations including remotely-sensed soil moisture and/or 

snow water equivalent (SWE) in snow dominated regions. 
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5 Conclusion 

The key findings of this dissertation are as the following. 

(1) Performances of two DA techniques (EnKF and PF-MCMC) were assessed on 

the Noah-MP model. In both DAs, CCI satellite soil moisture observations were 

assimilated into the model. Both DAs were successful in improving Noah-MP’s ability in 

simulating soil moisture. PF-MCMC demonstrated a better performance than the EnKF.   

 (2) A parallel algorithm based on Massage Passing Interface protocols was 

introduced in this dissertation. A successful implementation of this algorithm was 

demonstrated for simulating soil moisture during a significant flood in Colorado Front 

Range.  

(3) Performance of DA (EnKF) on WRF-Hydro was assessed. Successful 

assimilation of remotely-sensed soil moisture and USGS streamflow observations were 

provided. Improvements of up to 50% were observed.  

(4) Assimilation of soil moisture into the WRF-Hydro model does not improve 

outlet streamflow. Similarly, assimilation of USGS streamflow observations into WRF-

Hydro does not improve soil moisture simulation skill.  

(5) Forecasts are sensitive to initial conditions. Short-range forecasts are the most 

sensitive. Medium-range forecasts showed less sensitivity and long-range forecasts 

showed no sensitivity to initial conditions. It was estimated that the effects of an updated 
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initial condition last for about 50 hours. After that, the system forgets about the initial 

condition and atmospheric forcings become dominant. 

These findings could be beneficial for flood forecasting in research and practice. 

The findings suggest that more attention needs to be given to initial condition 

uncertainties and DA can help quantify this source of uncertainty. Moreover, these 

findings highlight the importance of DA for flood forecasting. Currently, USGS 

streamflow gauge observations are incorporated into the WRF-Hydro model using a 

nudging algorithm. This method, even though easy and quick, is not as effective as the 

ensemble data assimilation techniques elaborated in this dissertation. The results of this 

dissertation suggest that besides improving soil moisture and streamflow simulation 

skills, ensemble data assimilation is capable of improving short-range flood forecasts (up 

to two days). Moreover, uncertainty quantification and probabilistic forecasts are easier 

to communicate through an ensemble. Since such assimilation could become too 

expensive, DA is recommended to be initialized once a flood is expected (or in cases 

where more accurate forecasts are needed). Another way of decreasing the computational 

burden by DA is customizing the initiation of DA. The author suggests using ensemble 

data assimilation only in cases that a flood is expected. A reasonable strategy is starting 

the DA (with initial condition from the nudging algorithm) once the streamflow 

magnitude passes a certain percentile of the climatology (e.g., 75%). This way, the 

computational burden of the ensemble data assimilation is not imposed all the time. 
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Employing the proposed algorithm for a more efficient implementation of DA is also 

suggested.  

 Some future extensions of this work are as follows:  

(1) Investigating the effects of the routing methodology on the result of data 

assimilation. Given that the diffusive method has been proved to be more effective than 

the reach-based Muskingum-Cunge method, it might be more effective in passing the 

updated information from soil moisture data assimilation to the neighboring cells and 

finally to streamflow. It would be interesting to compare the performance of data 

assimilation under different routing schemes.  

(2) Investigating the advantages of ensemble data assimilation on more study 

areas with various sizes and elevations.  

(3) Investigate the time lag between updated soil moisture and streamflow: it was 

observed in the second chapter that updated soil moisture does not significantly affect the 

streamflow simulations. One interesting question to answer is if considering a time lag 

between streamflow and soil moister assimilation would lead to improvements that are 

more significant. Another solution could be in updating soil moisture in all soil layers 

(not only surface soil moisture).  

(4) The groundwater effect: In this dissertation, the groundwater effect was 

ignored mainly due to the long spin-up time that is needed for groundwater modeling. A 
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future extension of this study can consider the effect of water table. This is particularly 

important because the water table directly affects the soil moisture simulations.  

(5) Another critical problem to address in implementing data assimilation is 

maintaining the spatial coherence. If each grid cell is updated separately from the 

adjacent grid cells, the mass balance might be violated, as the spatial distribution of water 

is not maintained. Therefore, an interesting extension to this dissertation could consider 

passing information from one cell to adjacent cells during data assimilation.  
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